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CHAPTERI1

CircuitElementsandl.aws

Voltage

Energy is required for the movement of charge from one point to another. Let W
Joules of energy be required to move positive charge Q columbs from a point a to
point b in a circuit. We say that a voltage exists between the two points. The voltageV
between two points may be defined in terms of energy that would be required if a
charge were transferred from one point to the other. Thus, there can be a voltage
between two points even if no charge is actually moving from one to the other.

Voltage between a and b is given by

v="3/C Q

Workedare(W)in Joules
Charge(Q)incolumbs

HenceElectricPotential (V)=

Current:

An electric current is the movement of electric charges along a definite path. In caseof

a conductor the moving charges are electrons.

The unit of current is the ampere. The ampere is defined as that current which when
flowing in two infinitely long parallel conductors of negligible crosssection, situated 1meter
apart in Vacuum, produces between the conductors a force of 2 x 10”7 Newton per metre

length.

Power : Power is defined as the work done per unit time. If a field F newton acts for t

seconds through adistance dmetres alonga straight line, work done W = Fxd N.m. or J. The

power P, either generated or dissipated by the circuit element.

P:W;FXd
t t
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: Work
Powercan also bewrittenasPower=

time

= Lﬂ( )%: VoltagexCurrent
Charge Time

P=VxIwatt.

Energy: Electric energy W is defined as the Power Consumed in a given time. Hence, if

current [Aflowsin an element overatimeperiod tsecond, when avoltageVvoltsisapplied across

it, the energy consumed is given by

W =Pxt= VxIxtJorwatt.second.

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of

energy is kilowatt. hour (Kwh)

Resistance: AccordingtoOhm's lawpotentialdifference (V)across theends of aconductor is

proportional to the current (I) flowing through the conductorata constant temperature.

Mathematically Ohm's law is expressed as

Valor V=RxI

A% ] 3 . ! '
OrR= __whereRistheproportionalityconstantandisdesignatedastheconductor

resistanceandhas the unitofOhm((2).

Conductance :Voltage is inducedin astationaryconductor when placed ina varying

magnetic field. The induced voltage (e) is proportional to the time rate of change of

current, di/dt producing the magnetic field.

di
Thereforeex ! dt

Ore=Ldl

dt
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eandiarebothfunctionoftime.TheproportionalityconstantLiscalledinductance.

TheUnitofinductance isHenery(H).

Capacitance: A capacitor is a Physical device, which when polarized by an electric field by

applying a suitable voltage across it, storesenergy in the form of a charge separation.

Theabilityofthecapacitortostorechargeismeasuredintermsofcapacitance.

CapacitenceofacapacitorisdefinedasthechargestoredperVoltapplied.

o9 :_Coulomb Farad v

Volt

ActiveandpassiveBranch:

A branch is said to be active when it contains one or more energy sources. A passive

branch does not contain an energy source.
Branch: Abranchisanelementofthe networkhaving onlytwoterminals.

Bilateralandunilateralelement:

A bilateral element conducts equally well in either direction. Resistors and inductors
are examples of bilateralelements. When the current voltage relations are different for
the two directions of current flow, the element is said to be unilateral. Diode is an

unilateral element.

Linear Elements: When the current and voltage relationship in an element can be
simulated by a linear equation either algebraic, differential or integral type, the

element is said to be linear element.

Non Linear Elements : When the current and voltage relationship in an element can

not besimulated by a linear equation, the element is said to be non linear elements.

Kirchhoff'sVoltageLaw(KVL.):

ThealgebraicsumofVoltages(orvoltagedrops)in any closedpathorloopisZero.
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ApplicationofK'VLwithseriesconnected voltagesource.

R

Fig.1.1

V1+Vo—-IR—IR,=0
=V1+V=I(R1+R>) I

V,+V,

R,+R,

ApplicationofKVLwhilevoltagesourcesareconnectedinoppositepolarity.

R-.
A

AN———

V‘J'r_ é R,

Fig.1.2
Vi-IR;—V2-IR; —IR3= 0

> Vi— Ve=IR,+IR,+IR;

> Vi— Ve=I(R;+IR,+IRj)
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V=V,
R, +R,+R;

I:

Kirchaoff's CurrentL.aw(KCI.):

Thealgebraicsumofcurrentsmeetingat ajunction ormodeiszero.

Fig.1.3

Considering five conductors, carrying currents i, I, I3, lsandIsmeeting at a point O.
Assuming the incoming currents to be positive and outgoing currents negative.

Li+(-Ip)+13+(-14)+15=0 I—
L+ L+ 1s=0

Li+I5+Is=I+ I

Thus above Law can also be stated as the sum of currents flowing towards any
junction in an electric circuit is equal to the sum of the currents flowing away from
that junction.

YVoltageDivision(SeriesCircuit)

Considering avoltagesource(E)withresistorsRiand Rrinseriesacrossit.

R.

MWV

E + /D ; .

Fig.14
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_ER,

I =
+R,
VoltagedropacrossRi=1.Ri= ER,
R+R,
E.R
Similarlyvoltagedrop acrossR>=I.R>= :
R+R,

CurrentDivision:

A parallelcircuitactsas acurrentdivideras the currentdivides inallbranches ina parallel

circuit.

Fig.1.5

Fig.shownthecurrentlhasbeendividedintol;andlintwoparallelbrancheswithresistances Riand

Rowhile V is the voltage drop across Riand Ro.

A\
L=__ andl= =
R, R,

LetR=Totalresistance ofthe circuit.

Hence i:= L,_l o
R Rl 2
> pe RR
R+R,

Prepared By Er. Sushree Sangeeta Panda



\Y%

R RRR,
+R,

I:

But = V=I1R= LhR»

V. _VRHR)

( RR, \
> =Ry
R+R, }
L LRaR)
R,
Therefore I1=mz—
R,+R,

Similarlyitcanbederivedthat

IR,
R,+R,

Ir=
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CHAPTER2

MagneticCircuits:

Introduction: Magnetic flux lines always form closed loops. The closed path
followed by the flux lines is called a magnetic circuit. Thus, a magnetic circuit
provides a path for magnetic flux, just as an electric circuit provides a path for theflow
of electric current. In general, the term magnetic circuit applies to any closedpath in
space, but in theanalysis of electro-mechanical and electronic system this term is
specifically used for circuits containing a major portion of ferromagnetic materials.
The study of magnetic circuit concepts is essential in the design, analysis and
application of electromagnetic devices like transformers, rotating machines,

electromagnetic relays etc.

MagnetomotiveForce(M.M.F):

Flux is produced round any current — carrying coil. In order to produce the required
flux density, the coil should have the correct number of turns. The product of the

current and the number of turns is defined as the coil magneto motive force (m.m.f).

IfI=Currentthroughthecoil(A) N

=Numberof turnsin thecoil.

Magnetomotiveforce=Currentxturns So

MMF=1IXN

The unit of M.M.F. is ampere—turn (AT) but itis taken as Ampere(A) since N

has no dimensions.

MagneticFieldIntensity

Magnetic Field Intensityis defined as the magneto-motive force per unit lengthof the

magnetic flux path. Its symbol is H.
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MagneticfieldIntensity(H)= Magnetomotiveforce
Meanlengthofthemagneticpath

> BN
/ /
Where / is the mean length of the magnetic circuit in meters. Magnetic field intensity is also
called magnetic field strength or magnetizing force.

Permeability:-

Every substance possesses a certain power of conducting magnetic lines
of force. For example, iron is better conductor for magnetic lines of force
thanair(vaccum).Permeabilityofamaterial(pt)isitsconductingpowerfor magnetic
lines of force. It is the ratio of theflux density. (B) Producedina material to the
magnetic filed strength (H) i.e. p=By /

Reluctance:

Reluctance (s) is akin to resistance (which limits the electric Current).
Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a
measure of the opposition offered by a magnetic circuit to the setting up of the
flux.

Reluctanceistheratioofmagnetomotiveforcetotheflux. Thus

—Mmf A

Itsunitisampereturnsperwebber(orAT/wb)
Permeance:-
Thereciprocalofreluctanceiscalledthepermeance(symbolA).
Permeance (A)=1/S wb/AT
Turn T has no unit.

Hencepermeanceisexpressedinwb/AorHenerys(H).
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1)

2)

3)

4)

5)

6)

1)

2)

ElectricFieldversusMagenticField.

Similarities
ElectricField
FlowofCurrent(I) 1)
Emfisthecauseof 2)
flow of current
Resistanceoffered 3)

to the flow of
Current, is called

resistance (R)

Conductance

fo)='
R

Current density is
amperespersquare

meter.

Current (1) -EMFB/

4)

3)

6)

Dissimilarities

Currentactuallyflows

in an electric Circuit.

Energy is needed as

longascurrentflows

1)

2)

12

MagneticField
Flowofflux (&)

MMfisthecauseof

flow of flux

Resistanceofferedto
the flow of flux, is

called reluctance (S)
P itivit =p |
ermitivity(u) /S

Fluxdensityisnumber
of lines per square

meter.

Flux(@):MES

Fluxdoesnotactually
flow in a magnetic

circuit.

Energy is initially
needed to create the

magneticflux,butnot
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tomaintainit.

3) Conductance is 3) Permeability (or
constant and magnetic
independentofcurrent conductance )
strengthataparticular dependsonthetotal
temperature. flux for a particular

temperature.

B.H.Curve:

Place a piece of an unmagnetised iron bar AB within the field of a
solenoid to magnetise it. The field H produced by the solenoid, is called
magnetising field, whose value can be altered (increased or decreased) by
changing (increasing or decreasing) the current through the solenoid. If we
increase slowly the value of magnetic field (H) from zero to maximum value,the
value of flux density (B) varies along 1 to 2 as shown in the figure and the
magnetic materials (i.e iron bar) finally attains the maximum value of flux

density (Bm) at point 2 and thus becomes magnetically saturated.

Ironbar  Solenoid

Fig. 2.1

Now if value of H is decreased slowly (by decreasing the current in the
solenoid) the corresponding value of flux density (B) does not decreases along
2-1 but decreases some what less rapidly along 2 to 3. Consequently during the

reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other
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wards, during the period of removal of magnetization force (H), the iron bar is

not completely demagnetized.

In order todemagnetise the iron bar completely, we have to supply the
demagnetisastion force (H) in the opposite direction (i.e. by reserving the
direction of current in the solenoid). The value of B is reduced to zero at point4,
when H="14'". This value of H required to clear off the residual magnetisation, is
known as coercive force i.e. the tenacity with which the material holds to its

magnetism.

If after obtaining zero value of magnetism, the value of H is made more
negative, the iron bar again reaches, finally a state of magnetic saturation at the
point 5, which represents negative saturation. Now ifthe value of H isincreased
from negative saturation (='45') to positive saturation ( ="'12") a curve '5,6,7,2" is
obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle of

magnetisation and is known as hysteresis loop.
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NETWORKANALYSIS
Differentterms aredefinedbelow:

1. Circuit: Acircuitisaclosedconductingpaththroughwhichanelectriccurrenteither
flow orisintendedflow

2. Network: Acombinationofvariouselectricelements,connectedinany manner.
Whatsoever, is called an electric network

3. Node:itisanequipotentialpointatwhichtwoormorecircuitelements arejoined.

4. Junction:itisthat pointofanetwork where threeormorecircuitelementsarejoined.

5. Branch:itisapartofanetworkwhichliesbetweenjunctionpoints.

6. Loop: Itisaclosedpath inacircuitinwhichnoelementor nodeisaccountedmorethan once.
7. Mesh:Itisaloopthatcontainsnootherloopwithinit.

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of 1) circuit elements ii)
nodes iii) junction points iv) branches and v) meshes.

Rs

Ry
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Solution:i)no.of circuitelements=12(9 resistors+3voltagesources)
i1) no.ofnodes=10(a, b,c,d, e.f,g, h,k,p)
ii1) no. ofjunctionpoints=3(b,e,h)

iv) no.ofbranches=5(bcde,be,bh,befgh,bakh)

v) no.ofmeshes=3(abhk,bcde, beth)

MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding solutions
for anetwork. Thesuitabilityofeither meshornodalanalysistoaparticular problemdepends mainly
on the number of voltage sources or current sources .If a network has a large number of
voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources
in a circuit be voltage sources. Therefore, if there are any current sources in a circuit they
areto beconvertedinto equivalentvoltagesources,if, onthe other hand, thenetworkhas more
current sources,nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuitsmesh analysis
is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without
crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover.

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (¢) is a
planar circuit which looks like a non-planar circuit. It has already been discussed that a loopis
a closed path. Amesh is definedasa loop which does not contain any other loopswithin it. To
apply mesh analysis, our first step is to check whether the circuit is planar or not and the
second is to select mesh currents. Finally, writingKirchhoff's voltage law equations in terms
of unknowns and solving them leads to the final solution.

W —W—

YW

=

=

(a) | (b) ©
Figure 3.2

Observation of the Fig.3.2 indicates that there are two loops abefa,andbcdeb in the
network.Letusassumeloopcurrentsliandl,withdirectionsasindicatedinthefigure.

16
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Considering the loop abefa alone, we observe thatcurrent Iis passing through Ri and (I1-1»)
is passing through Rz By applying Kirchhoff’s voltage law, we can write

Vs=IiRi+Ro(li-I2) (3.1)
Ry R3
NN\ — AVAVAV, c
Vs Rz
R4
G) I I
f e d
Figure3.3

Similarly, if we consider the second mesh bcdeb, the current lris passing through

Rsand Rsand (Io— L)) is passing through Rz By applying Kirchhoff’s voltage law around the
second mesh, we have

Ro(I2-11)+R31>+R4=0 (3.2)

Byrearrangingtheaboveequations,thecorrespondingmeshcurrentequationsare
L(R1+R2) - LR2 =V,

-l1R>+H(R2+R3+R4) =0 (3.3)

By solving the above equations, we can find the currents Ijand D If we observe
Fig.3.3, thecircuit consists offive branches and four nodes, includingthe reference node.The
number of mesh currents is equal to the number of mesh equations.

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of
mesh current would be 5-(4-1)=2.
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IngeneralwehaveBnumberofbranchesandNnumberofnodesincludingthe reference node
than number of linearly independent mesh equations M=B-(N-1).

Example3.2Writethemesh —\\V\\

5Q 10Q2

currentequationsinthecircuit shown 10V — 2Q

50v —|—

infig3.4anddetermine thecurrents.

Figure3.4

Solution: Assume two mesh currents in the direction as indicated in fig.
3.5.Themesh currentequationsare

5Q
10 L L 10Q2
B OO  [50V
Figure3.5
SLi+2(1hi-12)=10
1012+2(12-11)+50=0 (3.4)

Wecanrearrangetheaboveequationsas 7l
-2I=10
-211+121=-50 (3.5)

Bysolvingtheabove equations,wehavel;=0.25A ,andl,=-4.125

Prepared By Er. Sushree Sangeeta Panda



19

Here the current in the second mesh I, is negative; that is the actual current I flows opposite
to the assumed direction of current in the circuit of fig .3.5.

Example3.3Determine the mesh currentljinthecircuitshowninfig.3.6.

Figure3.6

Solution: From the circuit, we can from the following three mesh equations

107,+5(11+1)+3(11-13)=50 (3.6)
25+ )+ ()= 10 (3.7)
3(5-h)*+1(+0L)=-5 (3.8)

Rearrangingtheaboveequationswe get

1811+51,-31=50 3.9)
51 +81+1:=10 (3.10)
31+ +4L=-5 (3.11)

Accordingtothe Cramer’srule
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50 5 -3
10 8 1
-5 1 1175
Ii= =_
18 5 -3 356
5 8
301 4

Orl1=3.3ASimilarly,

[18 50 -3

5 10 1
B 5 4] 355

21 18 5 -3 356

8 1
-3 1 4
Orl»=-0.997A (3.12)
18 5 50|
5 8 10
_ =g 525
3 =
1 31 356
SN S
N
Or =147A (3.13)

~1i=3.3A, L=-0.997A, I,=1.47A

MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be writtenby
inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

The loop equation are [iR1+ Ro(li-I) =V Ry

Figure3.7
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Rao(I-11)+1R3=-V> 3.14
Rul3+Rs5I3=V» 3.15

Reordering theaboveequations,wehave

(Ri+R2)11-Ro b=V, 3.16
-Roli+(R2+R3)[=-V> 3.17
(R4+R5)3=V2 3.18

Thegeneralmeshequationsforthreemeshresistivenetworkcanbewrittenas Ri1li =

Ri2lr #R1313= Va 3.19
TRo1[1+R201 T R2313=Vy 3.20
R3[4 R31+R331=V, 3.21

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and
3.21respectively, the following observations can be taken into account.

1. Theself-resistanceineachmesh

2. Themutualresistancesbetweenall pairsofmeshesand

3. Thealgebraic sumofthevoltagesineachmesh.

The self-resistance of loop 1, Ri1=Ri+R>, is the sum of the resistances through which
Lipasses.

The mutual resistance of loop 1, Ri>= -Ry, is the sum of the resistances common to loop
currents I1and I, If the directions of the currents passing through the common resistances are
the same, the mutual resistance will have a positive sign; and if the directions of the currents
passing through the common resistance are opposite then the mutual resistance will have a
negative sign.

V.=Viis the voltage which drives the loop 1. Here the positive sign is used if
the direction of the currents is the same as the direction of the source. If the current
direction is opposite to the direction of the source, then the negative sign is used.

Similarly R2>=R>+R3and R33;=R4+Rsare the self-resistances of loops 2 and 3
respectively. The mutual resistances Ri3=0, R21= -R2, R23=0, R31=0, R3,=0 are the
sums of the resistances common to the mesh currents indicated in their subscripts.

Vy=-V2, V= Vsarethesumofthevoltagesdrivingtheirrespective loops.
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Example 3.4write themeshequationforthecircuitshown infig.3.8

e % 5o
i
10V- C) I3 40
6Q
4—
Loy |
Figure3.8

Solution:thegeneralequationforthreemeshequationare

Rili=R12124R1313=V4 (3.22)
Ro1L1+R 2R3 1=V (3.23)
R31[1H R L+R33 =V, (3.24)

Considerequation3.22

Rii=selfresistanceofloop 1=(1Q+ 3Q+6£2)=10 Q
Rix=themutualresistancecommontolooplandloop 2 =-3 Q
Herethenegativesignindicatesthat thecurrentsareinoppositedirection.Ri13= the

mutual resistance common to loop 1 & 3=-6 Q

V.=+10V,the voltage the drivingthe loopl.

Herehepositivesignindicatestheloopcurrentl;isinthesamedirectionasthe source
element.

Thereforeequation3.22canbe writtenas
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10L;-31-613=10V (3.25)
ConsiderEq.3.23
Roi=themutualresistancecommontolooplandloop 2 =-3 Q

R2o= self resistance of loop 2=(3Q+2 Q +5 Q) =10 Q
R23=0,thereisnocommonresistancebetweenloop2and3. Vi, = -
5V, the voltage driving the loop 2.
ThereforeEq. 3.23canbewrittenas
-3L+10L=-5V (3.26)
ConsiderEq.3.24
R31=themutualresistancecommontoloop landloop3= -6Q R3>=
the mutual resistance common to loop 3 and loop 2 = 0 R33= self
resistance of loop 3=(6Q2+ 4 Q) =10 Q
V=thealgebraicsumofthevoltage drivingloop3
=(5 V+20V)=25V (3.27)
Therefore,Eq3.24canbewrittenas-61;+101:= 25V
-611-3-615=10V
-3I1+10L=-5V
-611+103=25V

SUPERMESHANALYSIS

Suppose any of the branches in thenetwork has acurrent source, then it isslightly difficultto
apply mesh analysis straight forward because first we should assume an unknown voltage
across the current source, writing mesh equation as before, and then relate the source current
to theassignedmesh currents. Thisisgenerally adifficult approach.Onway to overcomethis
difficulty is by applying the supermesh technique. Here we have to choose the kind of
supermesh. A supermesh is constituted by two adjacent loops that have a common current
source. As an example, consider the network shown in the figure 3.9.

W
+ V Ii R: Iz R4
O.
«— «—
1 3

Figure3.9
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Herethecurrent sourcel isinthecommon boundaryfor thetwomeshesland2.Thiscurrent source
creates a supermesh, which is nothing but a combination of meshes 1 and 2.

Rili+ R3(I>-13)=V
Or Rili+R31-R4l3=V
Consideringmesh3,wehave
R3(Iz-12)+ R4l3=0
Finally thecurrentl fromcurrent sourceisequaltothedifferencebetweentwomeshcurrents i.e.
Ii-I=1

wehavethusformedthreemeshequationswhichwecansolveforthethreeunknown currents in the
network.

Example3.5.Determinethecurrentinthe5QresistorinthenetworkgiveninFig.3.10

50v C

Figure3.10
Solution:-Fromthefirstmesh,i.e.abcda,wehave
50=10(I1-I2)+5(1i-15)

Or151;-10L-51:=50 (3.28)

Fromthesecondandthirdmeshes.wecan form asupermesh
10(I2-11 )2 +13+5(15-11)=0

Or-151+121+613=0 (3.29)

Prepared By Er. Sushree Sangeeta Panda



25

Thecurrentsourceisequal tothedifferencebetween Iland IIImesh currents
Le.b-I3=2A (3.30)
Solving3.28.,3.29and3.30.wehave
[1=19.99A,1,=17.33A,and[3=15.33A
Thecurrentinthe5Qresistor =I-I
=19.99-15.33=4.66A
The currentinthe5Qresistoris4.66A.

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the
currents, I1, land I,

10V )
I ()N
I I
4
CblOA 3Q 1Q
< S 20
4—
I | 11
Figure3.11

Solution ;In fig 3.11, the current source lies on the perimeter of the circuit, and
thefirst mesh is ignored. Kirchhoff*s voltage law is applied only for second and third meshes

Fromthesecondmesh,wehave
3(I-11)+2(I-13)+10 =0

Or 31+51-21:=-10 (3.31)

Fromthethirdmesh,wehave Is +
2 (I3-I) =10
Or 21 +31:=10 (3.32)

Prepared By Er. Sushree Sangeeta Panda



26

From the first mesh, [i=10A (3.33)
From the abovethree equations, we get

[1=10A, L=7.27, I;=8.18A

NODALANALYSIS

In the chapter I we discussed simple circuits containing only two nodes, including the
reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum
node, then it is possible to write N -1nodal equations by assuming N-1 node voltages.For example,al0
node circuit requires nine unknown voltages and nine equations. Each node in a circuit can be
assigned a number or a letter. The node voltage is the voltage of a given node with respect to
oneparticularnode, called thereferencenode, which weassumeat zero potential. In thecircuit shown in
fig. 3.12, node 3 is assumed as theReference node. The voltage at node 1 is the voltage at that node
with respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to node
3. Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See
Fig.3.13)

1 2
R» R4
y
Il CD %Rl R3 R5
3 Figure3.12
R>
- T WS
Ii
® .

Figure3.13

Ii=Vi/R1+ (Vi-V2)/R2
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WhereViandV,arethevoltagesatnodeland2,respectively.Similarly,atnode
2.the currententeringisequaltothecurrentleaving asshown infig.3.14

Rz R4
Figure3.14

(V2-V1)/R2+V2/R3+V2/(R4tR5)=0
Rearrangingtheaboveequations,wehave
Vi[1/R1+1/R2]-V2(1/R2)= 1y
-Vi(1/R2)+V2[1/R2+1/R3+1/(R4+R5)]=0

Fromthe above equationswecanfindthe voltagesateachnode.

Example3.7Determinethevoltagesateachnodeforthecircuitshowninfig3.15

3Q

10Q W 20
VWV AMATAN =

®
v ¢ 5Q 5A 10 6Q2

Figure3.15

Solution: Atnodel,assumingthatallcurrentsareleaving, wehave (Vi-

10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0

Or  Vi[1/10+1/3+1/5+1/3]-V[1/3+ 1/3]=1

0.96V1-0.66Vo=1 (3.36)

At node 2,assuming that all currentsare leaving except the current from current source,wehave
(V2-V1)/3+(V2-V1)/3+(V2-V3)/2=5
-Vi[2/3]+V2[1/3+1/3+1/2]-V3(1/2)=5
-0.66V1+1.16V2-0.5V;3=5 (3.37)
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Atnode3assumingallcurrentsareleaving, wehave (Vs3-

V2)/2 + Vi/1 + V3/6 =0

-0.5V2+1.66V3=0

ApplyingCramer’srulewe get

(3.38)

1 —066 0
s 16 703 7.154
V= -05 166 = =8.06
L1096 —066 0 0.887
—066 1.16 -05
0 0.5 1.66 |
Similarly,
096 1 ¢
—0.66 5 -05
. 0 0 166 1.9.06=102
2109 —066 0 0.887
—0.66 116 -05
0 -0.5 166 |
096 066 1 |
—0066 Llons
V= -0.5 0 | 273=307
096 —066 0 0.887
—0.66 1.16 —05
0 05 1.66

NODALEQUATIONS BYINSPECTION METHOD The nodalequationsfora generalplanarnetwork can also be written by
inspectionwithout going through the detailed steps. Consider a three node resistive network, including the reference node, as shown infig
3.16

Ry R3 Rs

p— Figure3.16

Prepared By Er. Sushree Sangeeta Panda



29

Infig. 3.16thepointsaandbaretheactualnodesandcisthereferencenode. Now

consider the nodes a and b separately as shown in fig 3.17(a) and (b)

RiVa R3

Vb Va

Figure3.17
Infig3.17(a),accordingtoKirchhoff’scurrentlawwehave
L+1+1:=0
(Va-V1)/R1+Va/RoH(Va-Vp)/R3=0
Infig3.17(b),ifweapplyKirchhoff’scurrentlaw
L4+15=13
“(Vb-Va)/R3+ Vi/Rs+(Vp-V2)/R5=0
Rearrangingtheaboveequationswe get

(1/R1+1/R2+1/R3)Va-(1/R3)Ve=(1/R1) V1
(-1/R3)Vat+(1/R3+1/R4+1/R5)Vv=V2/R5
In general, theabove equationcanbe writtenas

GaaVat Gab V=1
GbaVat Go V=12

(3.39)

(3.40)

(3.41)
(3.42)

(3.43)
(3.44)

By comparing Eqs 3.41,3.42 and Egs 3.43, 3.44 we have the self conductance at node
a, Gaa=(1/R1+ 1/Ro+ 1/R3) is the sum of the conductances connected to node a. Similarly,
Gob= (1/R3+ 1/R4+1/Rs5) is the sum of the conductances connected to node b. Gap=(-1/R3) is
the sum of the mutual conductances connected to node a and node b. Here all the mutual
conductances have negative signs. Similarly, Gva= (-1/R3) is also a mutual conductance
connected between nodes b and a. Iiand Dhare the sum of the source currents at node a and
node b, respectively. The current which drives into the node has positive sign, while the

current that drives away from the node has negative sign.
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Example3.8forthecircuitshowninthefigure3.18writethenodeequationsbythe

inspection method.

10V 2Q

5Q

-2V

5V

4Q

Fig3.18
Solution:-
The generalequationsare
GaaVatGap V=11

GvaVat+ Gob V=12

Considerequation 3.45

(3.45)

(3.46)

Gaa=(1+1/2+1/3)mho.Theself conductanceatnode aisthesumoftheconductancesconnected to

node a.

Gob=(1/6+1/5+1/3)mhotheself conductanceatnode bisthesumof conductancesconnected to

node b.

Gav=-(1/3)mho, themutualconductancesbetweennodesaandbisthesumof the conductances

connected between node a and b.

SimilarlyGpa=-(1/3),thesumofthemutualconductancesbetweennodes banda. 1;=10/1 =10

A, the source current at node a,

Prepared By Er. Sushree Sangeeta Panda



31

L=(2/5+5/6)=1.23 A thesourcecurrentatnodeb.

Therefore, the nodal equations are

1.83V,-0.33V=10 (3.47)
-0.33V+0.7Vv=1.23 (3.48)
SUPERNODEANALYSIS

Supposeany of thebranchesin thenetwork hasa voltagesource, thenit isslightly difficult to
apply nodal analysis. One way to overcome this difficulty is to apply thesupernode technique.
In this method, the two adjacent nodes that are connected by a voltage source are reduced to a
single node and then the equations are formed by applying Kirchhoff’s current law as usual.
This is explained with the help of fig. 3.19

Vi \%) . V3
| i
W 2 THEN /3
R» Vx
1 GD Ry R3 R4 Rs
— Vv
)
FIG3.19

It isclearfromthefig.3.19,thatnode4isthereference node.ApplyingKirchhoft’s current

law at node 1, we get
I=(Vi/R1)+H(Vi-V2)/R2

DuetothepresenceofvoltagesourceV,inbetweennodes2and3, itisslightly
difficult to find out the current. The supernode technique can be conveniently applied in this

case.

Accordingly,we canwritethecombinedequationfornodes2and3as under.
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(V2-V1)/R2+V2/R3+(V3-Vy)/Ra+V3/R5=0
Theotherequationis

V2-V3=Vy

32

Fromtheabove threeequations,wecanfindthe threeunknownvoltages.

Example3.9Determinethecurrentinthe5Qresistorforthecircuitshowninfig.

3.20
2Q
Vi Vs + s V3
20V
1Q 5Q 2Q
Gg 0A3Q
10V fig.3.20
Solution.Atnodel
10= V1/3+(Vi-V2)/2
Or Vi[1/3+1/2]-(V2/2)-10=0
0.83V1-0.5V2-10=0 (3.49)

Atnode2and3,thesupernodeequationis
(V2-V1)/2+ Va2/1+(V3-10)/5+V3/2=0
Or —Vi2+Vo[(1/2)+1]+V3[1/5+1/2]=2
Or -0.5Vi+1.5V,+0.7V3-2=0
The voltagebetweennodes2and3isgivenby

V12-V3=20

(2.50)

(3.51)
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The current in 5Q resistor Is =(Vs-
10)/5Solvingequation3.49,3.50and3.51,weobtai
n

V3=-842V

Currentsls=(-8.42-10)/5=-3.68 A(currenttowardsnode3)i.ethecurrent flows

towards node 3.

SOURCETRANSFORMATIONTECHNIQUE

In solving networkstofind solutions onemay have to deal with energysources. Ithas
already been discussed in chapter 1 that basically, energy sources are either voltage sourcesor
current sources. Sometimes it is necessary to convert a voltagesource to a current source or
vice-versa. Any practical voltage source consists of an ideal voltage source in series with an
internal resistance. Similarly, a practical current source consists of an ideal current source in
parallel with an internal resistance as shown in figure3.21. Ryand Rirepresent the internal
resistances of the voltage source Vs ,and current source Is respectively.

Rv

b fig3.21 b

Any source, be it a current source or a voltage source, drives currentthrough its load
resistance,andthemagnitudeofthecurrentdependsonthevalueoftheloadresistance.Fig
3.22representsapracticalvoltagesourceandapracticalcurrentsourceconnectedtothe same load
resistance Rp.
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]t:)\/s I Rr Is CD Ri RL

A

(a) (b)
Figure3.22
Fromfig3.22(a)theloadvoltage canbe calculated by usingKirchhoff’svoltage law as
Var=Vs-ILRy

TheopencircuitvoltageVo.—=V;

ol V
Theshortcircuitcurrentlse= * _
R,

from fig3.22(b)

I =L-I=Is-(Vav/R1)
TheopencircuitvoltageVo.=IsR1Th
e short circuit current Is=Is

The above two sources are said to be equal, if they produce equal amounts of current
and voltage when they are connected to identical load resistances. Therefore, by equating the
open circuit votages and short circuit currents of the above two sources we obtain

Vo=iR1=Vslse=
I=VyRy
It follows that
Ri=R\=Rs; V=IRs

where Rgis the internal resistance of the voltage or current source. Therefore, any
practical voltage source, having an ideal voltage Vsand internal series resistance Rscan be

replacedbyacurrentsourcels=Vs/RsinparallelwithaninternalresistanceRs. Thereverse
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tansformation is also possible. Thus, a practical current source in parallel with an internal
resistance Rscan be replaced by a voltage source Vs=IsRsin series with an internal resistance

Rs.

Example 3.10 Determine the equivalent voltage source for the current source shown in fig
3.23

S5A 5Q

Figure3.23

Solution: ThevoltageacrossterminalsAandBisequalto25V. sincetheinternalresistance for the
current source is 5 €, the internal resistance of the voltage source is also 5 Q. The equivalent
voltage source is shown in fig. 3.24.

5Q

Fig3.24

Example3.11Determinetheequivalentcurrentsourceforthevoltagesourceshowninfig.3.25

W A
7Xx

30Q2

50V

Prepared By Er. Sushree Sangeeta Panda



37

Solution:theshortcircuitcurrentatterminalsAandBisequalto I= 50/30

=1.66 A

1.66A

30Q

Fig3.26

Sincetheinternalresistanceforthevoltagesourceis30€2, the internalresistanceof the
current source is also 30 Q. The equivalent current source is shown in fig. 3.26.
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NETWORKTHEOREMS

Beforestartthetheoremweshouldknowthebasictermsofthenetwork.
Circuit:Itisthecombinationofelectricalelementsthroughwhichcurrent passes is
called circuit.
Network: It is the combination of circuits and elements is called network.
Unilateral:Itisthecircuitwhoseparameterandcharacteristicschangewith change
in the direction ofthe supply application.
Bilateral:Itisthecircuitwhoseparameterandcharacteristicsdonotchange with the
supply in either side of the network.
Node:Itistheinterconnectionpointoftwoormorethantwoelementsis called
node.
Branch:Itistheinterconnectionpointofthreeormorethanthreeelementsis called
branch.
Loop:Itisacompleteclosedpathinacircuitandnoelementornodeistaken more than
once.
Super-PositionTheorem :
Statement :"It statesthat ina network oflinear resistancescontaining more than
one source the current which flows at any point is the sum of all the currents
which would flow at that point if each source were considered separatelyand all
other sources replaced for time being leaving its internal resistances if any".

By R
MWW MWW
E e
— —LE,
I . § R; Tr,
Explanation:

ConsideringEsource

Stepl.
R,&rareinseriesandparallelwithR;andagainserieswithR,
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(RoF12)|| R3
_(Ratr)R;_
Ro+r+R3

Rt;=m+R+r,
=1

'Ry
= L1xR3
LiRat2)

Ro+ry+R;3

Step—2
ConsideringE2source,R | &r,areseriesandR;parallelandR,inseries

(say)

(Ry+1)|| R3
_(Ri+r)Rs_
R1+F1+R3
Rt2=n+R2+r )

I=E2

2 Rt

) DilRi)
B=p 4R

(say)

CurrentinR branch=/-/ 1

CurrentinR,branch=/-7 |
CurrentinR;branch=/-7

3 3
The direction of the branch current will be in the direction of the greater
valuecurrent.

Thevenin’sTheorem:
ThecurrentflowingthroughtheloadresistanceR ;connectedacrossanytwo terminals

A and B of a linear active bilateral network is given by
Vi _ V.
Ii= —R¥R— "R IR
th L i L

Where Vy, = V. is the open. circuit voltage across A and B terminal when Ry is
removed.

R; =Ry, 1s the internal resistances of the network as viewed back into the open
circuit network from terminals A & B with all sources replaced by their internal
resistances if any.
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Explanation:

Step—1forfinding V.

RemoveR| temporarilytofindV,.
R,

W'I' [

L =T R l -

E

=
R 1 +R2+F
V,=IR,

Step—2finding R

40

Removeall the sourcesleaving theirinternal resistances ifany andviewed from

open circuit side to find out R; or Ry,.

'll' ot
r R_, %
«B
Ri:(Rl'H’)”RZR:
(El +7 Rz
l Ri+r+Ry
Step—3

Connectinternalresistancesand Thevenin’svoltageinserieswithload resistance R; .
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WhereRy,=theveninresistance
Vy=thevenin voltage
I =thevenin current

RiZ(R1+I”)| ’Rz
If— Vth — Voc
RFR RTR
th L i L
Example 01- Applyingthevenintheoremfindthefollowingfromgiven figure
(1)  theCurrent in the load resistanceR; of15
30 A
1242
15Q
Y H——
r= 1€
=i
B

Solution:(i)-FindingVoc
—RemovelSQresistanceandfindtheVoltageacross AandB

Rt A

TYyy

24v
r=1Q

V. csthevoltageacross12qresister

_2412xgp

12+3+1

(i)  FindingRy,
Riyiscalculatedfromtheterminal A&Bintothe network.
The 1 QOresister and 3 Qdin are series and then

30
parallel AV

vy

Ry=3+1//12

ALAA

:4x12_
16

30
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18
(i) I — Foc =1A.

R;+R 1543
Example02:Determinethecurrentinl QresistoracrossABofthenetwork
showninfig(a)usingthevenintheorem.
Solution: Thecircuirtcanberedrawnasinfig(b).

g

'_:_HMJG =4
III . ] | 'L.
S =8 =
Lﬁll_ e =
vz I iy
. it
L—da fig(a),(b),(c),(d)respectively

Step-1 remove the 1€ resistor and keeping open circuit . The current source
isconverted to the equivalent voltage source as shown in fig (c)
Step-02forfindingthe Vy,we'llapplyK'VLlawinfig(c) then
3-(3+2)x-1=0
x=0.4A
Vin=Vap=3-3*0.4=1.8V
Step03-forfindingtheRy,allsourcesaresetbezero
Ry=2//3=(2*3)/(2+3)=1.2Q
Step04-Thencurrently=1.8/(12.1+1)=0.82A
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Example03: The four arms of a wheatstone bridge have the following
resistances .

AB=100Q,BC=10Q,CD=4Q,DA=50QQ.AA  galvanometer of 20Q
resistance is connected acrossBD.Usethevenin theorem to compute the current
through the galvanometer when the potential differencel 0V ismaintained across
AC.

Solution:
(=9
gt By o=
i }
I '\;.r_'-.-u.:"‘ | b i |
[ = Il
Il e
# P

- ; |
S = ﬁ":f‘ | A
|| ey L \* M\ff'

—

step01-Galvanometerisremoved.
step02-findingtheVy,betweenB&D.ABCisapotentialdivideronwhicha voltage
drop of 10vtakes place.
PotentialofBw.r.tC=10*10/110=0.909V
Potential of D w.r.t C=10%4/54=.741V
then,
p.dbetweenB&DisV,=0.909-.741=0.168V
Step03-finding Ry,
removeallsourcestozerokeepingtheirinternalresistances.
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R4=Rpp=10//100+50//4=12.79Q
Step04;
lastlyl=Vu/RutR=0.168/(12.79+20)=5mA

Norton'sTheorem

Statement :In any two terminal active network containing voltage sources and
resistances when viewed from its output terminals in equivalent to a constant
current source and a parallel resistance. The constant current source is equal to
the current which would flow in a short circuit placed across the terminals and
parallel resistance is the resistance of the network when viewed from the open
circuit side after replacing their internal resistances and removing allthe sources.

OR
In any two terminal active network the current flowing through the load

resistance Ry is given by

LR,

ReR,

Where R; is the internal resistance of the network as viewed from the open ckt
side A & B with all sources being replaced by leaving their internal resistancesif
any.

1

h

I istheshortcktcurrentbetween thetwoterminalsoftheloadresistance when
it is shorted
Explanation:
B

F ot—
—

Step—1
A&Bareshortedbyathickcopperwiretofindoutl,
L =E/(R+7)
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R b 4

B
I=E/ (R;+r)
Step—2

45

Removeallthesourceleavingitsinternalresistanceifanyandviewedfrom
opencircuitsideAandBintothenetworktofindR;.

'y *
Ri1

R ,-I(R 1+7") | |R2
R iI(R 1 +F)R2/ (R 1 +7"+R2)

gm

Step—3

Connectl,.&RjinparallelwithRy
lsc_x Ri
[, ===
RA+R;

Example 01:Usingnorton's theorem find the current that would flow through the
resistor Roywhenit takes the values of 12€0Q,24Q&36Q respectively in the fig

shown below.
Solution:
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=, -
PR | o . o T g e

Step 01-remove the load resistance by making short circuit. now terminal

ABshort circuited.

Step02-Findingtheshortcircuitcurrentl,

FirstthecurrentduetoE1s=120/40=3 A ,andduetoE,1s180/60=3A. then

[.=3+3=6A

Step03-findingresistanceRy
Itiscalculatedbybyopencircuittheloadresistanceandviewedfromopen circuit and

into the network and all sources are taken zero.

Rn=40//60=(40*60)/(40+60)=24

1) whenR;=12Q,1; =6%*24/(24+36)=4A

i1) whenR;=24Q.1; =6/2=3 A

iil) whenR=36Q,1;=6%*24/(24+36)=2.4A

MaximumPowerTransferTheorem

Statement : A resistive load will abstractmaximum power from a network when
the load resistance is equal to the resistance of the network as viewedfrom the
output terminals(Open circuit) with all sources removed leaving their internal
resistances if any

Proof: A
1: 3 I L
L i nl;
+RL :R1 §

Powerdeliveredtotheload resistance g R
1s given by
P=I'R Vi

L LL 2 L

( ) B
:| th | RL

\RAR, )
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V2R
— th L
(RERY,
PowerdeliveredtotheloadresistanceR; willbemaximum
When@:O
dR;
d [ VR )

L
e (R+R) —% RA2(R+R)
.......... th i L thL L_()
(R1+RL)
:>V2(R+R)2— V2R><2(R+R)=0

th

~»V2(R+R) 2V2R(R+R) 0
%VZ(R+R) 2V2R(R+R)

thL i L

=dR i%@#f} =0

----- >RAR=2R|,
=R=2R;—R;—
R=R;

.

[ 4
(P L)max :—I—IFL
| R+Ry) 7|
( v \

i
k4é%
V2
= =i - X R,
4R,

2
(PL)rnax:m

L

MILLIMAN’STHEOREM:
According to Millimans Theorem number of sources can be converted

into a single source with a internal resistance connected in series to it,if the

sources are in parallel connection.
AccordingtotheMilliman’stheoremtheequivalentvoltagesource

E:\1+E><1+E><1+..
T —
E= 1 R, R21 R,
L_li-l-i-l- .....
R R R Ri R R R.
E 2 =5 | E E.
T i T =
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_E1\Gi+EyGotEsGit..
G1+Gr+Git...
E E, E,
R
R R R
G+GrtGst....
N+l
G1+Gr+Gat...
Example — Calculate the current across 5€2 resistor by using Milliman’s Thm.

Only

A
20 R‘. E
R 603 0 Ry
Bi- 0
E, —— 6v E:——12v
L I B
Solution:-Given,
R1=2Q, R2:6Q § R3=4Q, RLZSQ
E1:6V, E2:12V
theresistanceR,isnotcalculatedbecause thereisnovoltagesource
E, E; E;
&
Va‘E: 1 RoR51
1 I R2R3
s T
Ry
§+0+127
_LJ 1 _
264 .
_OTUSSEE — _6.54v
2+3 11
13 1 12
R1: L B :_:1'_09'2
L1
Rl R, R 12
Voc 6.54
Iz ————=—""—""=1.074Amp.

1.09+5  1.09+5
COMPENSATIONTHEOREM:
Statement:

It’s states that in a circuit any resistance ‘R” in a branch of network in
which a current ‘I’ is flowing can be replaced. For the purposes of calculations
by a voltagesource = - IR

OR
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If the resistance of any branch of network is changed from R to R +4R
where the currentflowing originaly isi. The change current at any other place in
the network may be calculated by assuming that one e.m.f — I AR has been
injected into the modified branch. While all other sources have their e.m.f.
suppressed and ‘R’ represented by their internal resistances only.

Ri=5 i 2.5A i -2.54
= 75v R, 200 R; =200
Exp-(01)
Calculatethevaluesofnewcurrentsinthenetworkillustrated ,whenthe

resistor Rj is increased by 30%.
Solution:-Inthegivencircuit,thevaluesofvariousbranchcurrentsare
11=75/(5+10)=54 .
S 20 1
A Z—ZO_=2-5AmP- W

NowthevalueofR;,whenitincrease30% 3
R3=20+(20x0.3)=26() R, F0° T 260
IR=26-20 =602 i h
V=—IAR T

A
|
=

=—2.5x6
=15V 5:20 100
5)200= = =40
5420 25
—15— 15

I'= =0.54m
4426 30 v

=05 20 1amp

I —

x

0.3520

=" =044mp

b5
5"=5-0.4=464mp
L"=0.1+2.5=2.64Amp
["=2.5-0.5=24mp
RECIPROCITYTHEOREM:
Statement:

49
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It states that in any bilateral network, if a source of e.m.f ‘E’ in any
branch produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting
in the second branch would produce the same current ‘I’ in the 1% branch.

Step— 1First ammeterB reads thecurrent in thisbranchdue tothe36v source, the
current is given b
4><12g Y
412=""230
16

R=326+4+3 =90}
I=" =4Amp

9
_ 4x12 48
B 124341 16

Iz=currentthroughlresister

Amp

Step — (II) Then interchanging the sources
and l’neaSélrlllélg7t516 current

6Q120=" = "=40
6+12 18
R=4+3+1=80)
I=36_:4.5Amp,1:4'5><12:3AmpTransferresistance=V=36:12_(1_. e
8 4642 i
COUPLEDCIRCUITS
Itisdefinedastheinterconnectedloopsofanelectricnetworkthroughthe magnetic
circuit.

Therearetwotypesofinduced emf.
(1) StaticallyInducedemf.
(2)  DynamicallyInducedemf.
Faraday’sLawsofElectro-Magnetic :
Introduction— FirstLaw:—
Whenever the magnetic flux linked with a circuit changes, an emf is induced in
it.

50

Prepared By Er. Sushree Sangeeta Panda



51

OR
Wheneveraconductorcutsmagneticfluxanemfisinducedin it.
SecondLaw:—
It states that the magnitude of induced emf is equal to the rate of change of flux
linkages.

OR
Theemfinducedisdirectlyproportionaltotherateofchangeoffluxandnumber of
turns

Mathematically:
4 ¢

ex
dt
ex N

Or e =N ddt(l)
Where e=inducedemf
N=No.ofturns ¢
= flux
‘-ve’signisduetolLenz’s Law
Inductance:—>

Itisdefinedasthepropertyofthesubstancewhichopposesanychangein
Current & flux.

Unit:—  Henry
Fleming’sRightHandRule: —

It states that “hold your right hand with fore-finger, middle finger and
thumb at right angles to each other. If the fore-finger represents the direction of
field, thumbrepresents the directionofmotionofthe conductor, then themiddle
finger represents the direction of induced emf.”

Lenz’sLaw:—

It states that electromagnetically induced current always flows in such a
direction that the action of magnetic field set up by it tends to oppose the vary
cause which produces it.

OR

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit opposes the
change of magnetic flux.

(2) DynamicallyInducedemf:—
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In this case the field is stationary and the conductors are rotating in an
uniform magnetic field at flux density ‘B” Wb/mt” and the conductor is lying
perpendicular to the magnetic field. Let ‘I’ is the length of the conductor and it
moves a distance of ‘dx’nt in time ‘dt’ second.

Theareasweptbytheconductor=/.dx
Hencethefluxcut=/dx.B

Changeinfluxintime‘dt’second= %
E=Bly
Where Vzdx_
dt
Iftheconductorismakinganangle ‘0’ withthemagneticfield,then
e=Blvsin 0

(1) StaticallyInducedemf:—
Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by
increasing or decreasing.
Itisdividedintotwotypes.
(1)  Self-inducedemf.
(1)  Mutually-inducedemf.
(i) Self-induced emf :—It is defined as the emf induced in a coil due to
thecha?ge of its ownflux linked with the coil.

ST

v
Ifcurrentthroughthecoilischangedthenthefluxlinkedwithitsown turn will
also change which will produce an emf is called self-induced emf.

Self-Inductance:—

52
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Itisdefinedasthepropertyofthecoilduetowhichitopposesanychange
(increase or decrease) of current or flux through it.

Co-efficientofSelf-Inductance(L):—
Itisdefinedastheratioofweberturnsperampereofcurrentinthecoil.
OR
Itistheratiooffluxlinkedperampereofcurrentinthe coil
1stMethodfor‘L’:—
o
1
Where L=Co-efficientofself-induction N
= Number of turns
o= flux
[=Current

2ndMethodforL:—
Weknow that
2
1
SLI=No
——LI=N0

dt

dt

dt
ereL=Inductance

eL:—NQZisﬂ?nownasself—inducedemf.
dt

dl
When =lamp/sec.
dt

e=1volt
L=1Henry
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Acoilissaidtobea self-inductanceofl Henryif1voltisinducedinit.
Whenthecurrentthroughitchangesattherateof1amp/sec.
3rdMethodforL:—

L:MOM,A?ZZ
WhereA=Areaofx-sectionofthecoil N =

Number of turns

L=Lengthofthecoil
(i) MutuallyInducedemf:—

It 1s defined as the emf induced in one coil due to change in current in
other coil. Consider two coils ‘A’ and ‘B’ lying close to eachother. An emfwill
be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the
position of the rheostat.

Mutuallnductance:—

Itisdefinedastheemfinducedincoil ‘B’duetochangeofcurrentincoil ‘A’ is
the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’.
Co-efficientofMutuallnductance(M)

Coefficient of mutual inductance between the two coils is defined as the
weber-turns in one coil due to one ampere current in the other.
1stMethodfor‘M’:—

YRR

I

N, = Number of turns

M=Mutuallnductance ¢

.= flux linkage

I,=Currentin ampere
2ndMethodforM:—

Weknow that

N
A

>MT 1=N2l§1
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:>—Md II_Z—N di
dt 2dt
Il
M =
a "
I?MdZZ—p
BNV
- dl,
dt
o
d. ,
Where e, =N, ~'isknownasmutuallyinducedemf.
dt
ey=—1volt
ThenM= 1Henry
Acoil issaidtobea mutualinductanceofl Henrywhenlvoltis

induced when the currentof 1 amp/sec. is changed in its neighbouring coil.

3rdMethodforM:—
M:MQMZA—]\lleZ

Co-efficientofCoupling:
ConsidertwomagneticallycoupledcoilshavingN;andN, turns

respectively. Their individual co-efficient of self-inductances are
MMAN

L . — o lr 2
MMAN?

Lz_ o lr 2
The flux ¢;producedingoil*A’duetoacurrentofl;ampereis
LI  MMAN’ I
¢1 =ll— o r Lol

N / N,

o _M M AN\ I,

[
Supposeafractionofthisfluxi.e. K,¢,islinkedwithcoil ‘B’
Thent=""Pov= Kyw--s (1)
I, 2 IMMA
Similarlytheflux¢,producedincoil‘B’duetol,amp.Is

p, MMANT,
/

Supposeafractionofthisfluxi.e. Ky,isligkedwithcoil ‘A’
Theny=""v=K, Ny, N, )

I, L IMMA
Multiplyingequation(1)&(2)
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M= 2@2 ]
IIMMA

r

0 "
JMMAN? \( MMAN?

)

— K o r 1 | 4 r
\ [ ”\ [

[QK 1=K>=K ]
M=K*L L

Li.L,

Where‘K’isknownastheco-efficientofcoupling.

')

56

Co-efficientofcouplingisdefinedastheratioofmutualinductance between

two coils to the square root of their self- inductances.

InductancesInSeries(Additive):—

Fluxes are in the same durection

Let M=Co-efficientofmutualinductance

L, = Co-efficient of self-inductance offirst coil.

L,=Co-efficientofself-inductanceofsecondcoil.
EMFinducedinfirstcoilduetoself-inductance

di
\dt
Mutuallyinducedemfinfirstcoil

/i
eM] :_Md e

€Ll =L

dt
EMFinducedinsecondcoilduetoselfinduction
e, =L dl
L 2dt

Mutuallyinducedemfinsecondcoil

/4
e M, :_}w‘d

Totalinducedemf

e=e +e +e +e
Ly L, M, M,

If*L’istheequivalentinductance,then

dt
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i —p dI di i
- g g g

ar
L -2M),

dt  dt !
= L=L1+[+2M

InductancesInSeries(Substnactive):—

1‘ +‘|; 1
|5

(Fluxes are opposite in direction)

Fi

Let M=Co-efficientofmutualinductance
L,=Co-efficientofself-inductanceoffirstcoil
L,-=Co-efficientofself-inductanceofsecondcoil Emf

induced in first coil due to self induction,

e =L

llL] du lgt [mﬁpf ]
Mutuallyinduced e Jirystcol

e :——FM =M

M dt
Emﬁnducedirclisl ecocﬁdcoildueto self-induction
e =L
i 2 C;
Mutuallymduchg m fi 1\ns geondcoil
e =—M

_ e L dtJ dt
Totalmducedemf
d] d]L eM Mee dl
Then-L—=- d_]+ Ma’]
dt \dt——L, +M dt dt

dt
----- e d](L +L-2M) —~L=L+L—2M

dt da ' 2 b
InductancesInParallel:—

57
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LettwoinductancesofL; &L,areconnectedinparallel

58

Lettheco-efficentofmutualinductancebetweenthemisM.

=i+
dl di, di,
— = 4 =

(1)

dr dt dt

e=Ldi i

LlchMdz
{

d
12+Md 3 dt
+Md —Ldlz

ldt 2dt
_=-M)
1 dt 9,

. di_(Ly=M)di

—[
ldt ]
L

dt

di
dt

2)

dt (Li-M)dt
dl _di, didt
I = EEpesswraes
dt dt
(_2 M !dlz d12

(L —1\4)dt
L—M I

dt

szd[ﬁ (

LM +1]ds
| )™
If*L’istheequivalentinductance
di di

e=L 2

d

di1

_Ldz1 %M dlzdt

o

dt
. di_l dz( dip \-
di _( A
Substitutingthevalueof%

dt

(4)

di: 1|_LL2_ +A4di2 —!
@ 1| 'nm a
Equatingequation(3)&(5)

©)
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[ LM mc?*z_ L LM WM di

e )1 LL \LM ) Jﬂ
S
:)LL;%MM 10 (LM ]
: +1_ &1 J+M |
L-M+L-M ™1 LM+LM M|
—2 1 - —|12 1 1
Li-M L Li-M j

L+L—-2M 1 LL-M]

2 - — |1
LM LL L—M j
SL+L-2M= LL-M]
1 2 L 1
_ LLM®
L\+L2M

|

Whenmutualfieldassist.
LL-M
L= 12
Li\+L,+2M
Whenmutualfieldopposes.
CONDUCTIVELYCOUPLEDEQUIVALENTCIRCUITS

—  The Loop equation are fromfig(a)

d
o
V —1.di, Mdl1
i dt
Iy
A T —=—
_rﬂ'ﬂml——i - A
\ o]
L "
A x
- -
= Theloopequationarefromﬁg(b) g

V1:(L1 M) M _(ll +12)

Prepared By Er. Sushree Sangeeta Panda



di d
Vz:(Lz_ M) T;;’M E(Zl +12)

Which,onsimplificationbecome

VzLﬂ{_M@
b lar dt
_rdi i
VoLl
dt dt
Socalledconductivelyequivalentofthemagneticcircuit. Herewemay

representZ =L;-M .
Zp= (L,-M)andZ=M
In case M is + ve and both the currents then Z, = L-M , Zz = L,-Mand Z- =M,
also , ifis — ve and currents in the common branch opposite to each other Z, =
L+M, Zg =L,+Mand Zc = - M.
Similarly, if M is —ve but the two currents in the common branch are
additive,then also.
Z,=L,+M,Zg=L,+MandZ=-M.

FurtherZ, , Zg and Z¢ may also be assumed to be the T equivalent of the circuit.
Exp.-01:

Two coupled cols have self inductancesL = 10x10”°H and L,= 20x10°H.
The coefficient of coupling (K) being 0.75 in the air, find voltage in the second
coil and the flux of first coil provided the second coils has 500 turns and the
circuit current is given by 1; = 2sin 314.1A.
Solution:

M=K .[LL,

M=0751810%  x 20k
—M=10.6x10"H

Thevoltageinducedinsecondcoil is

=106 x10_3_(2sin314t)
dt

=10.6x10"2x2x3 14cos3141.
ThemagneticCKtbeinglinear,
N2 600 x (K¢)

I I
LM ><1.210.6x10‘3
T 500xK ' 500%0.75
= 5.66x107sin314t

x 2sin314¢

60
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$0,=5.66x10sins314t.

Exp.02
Find the total inductance of the three series connected coupled

coils.Where the self and mutual inductances are
L,=1H,L,=2H, L;=5H

M ,=0.5H,M,;=1H,M;=1H

Solution:

Ly =Li+tMj; tMy3
=14+20.5 +1
=2.5H

Lg  =Ly+tMy +Mj,
=2+1+0.5
=3.5H

Lc  =L3tMy +Mj;3
=5+1 +'1
=7H

Total inductances are

L. =LatLptL.
=2.5+3.5+7
=13H(Ans)

Example(03:

Two identical 750 turn coils A and B lie in parallel planes. A current
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate
the mutual inductance of the arrangement .If the self inductance of each coil is
15mH, calculate the flux produced in coil A per ampere and the percentage of
this flux which links the turns of B.

Solution: Weknowthat

Mdl,
= Tar
11.25
M =@%f = —— =7.5mH
1500
| Yt
now,
Lm0t e e 150200 21050
M 7.5+ 107"
k=——= =0.5= 50
T.L 15+ 10 #
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A.CFUNDAMENTAL
DirectCurrent AlternatingCurrent
¥ \Y
; P N N
T - | T SN
" L—>

(1) | D.C. always flow in onedirection | (1) | A.C. is one which reverse
and whose magnitude remains periodically in

constant. ' : .
direction and whose magnitude

undergoes a definite cycle changes
in definite intervals of time.

Lowcostofproduction
2) Highcostofproduction. 2) .
ByusingtransformerA.C.voltage
3) It 1s not possible by D.C.Because SeaL N R
i can be decreased or increased.
D.C.isdangerous to the
transformer. A.C.canbetransmittedtoalong
(4) (4] distance economically.

[tstransmissioncostistoohigh.

DefinitionofA.C.terms:-
Cycle:Itisonecompletesetof+veand—vevaluesofalternatingquality spread over
360°r 2| [radan.
TimePeriod:Itisdefinedasthetimerequiredtocompleteonecycle.
Frequency:Itisdefinedasthereciprocaloftimeperiod.i.e. f=1/T
Or
Itisdefinedasthenumberofcyclescompletedpersecond.
Amplitude :1It is defined as the maximum value of either +ve half cycle or —ve
half cycle.
Phase:Itisdefinedastheangulardisplacementbetweentwohavesiszero.
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OR
Two alternating quantity are inphase v
when each pass through their zero value at I

the same instant and also attain their y7T
maximum value at the same instant in a
given cycle. il t—

V=V,sinwti
=], sin wt

PhaseDifference:-Itisdefinedastheangulardisplacementbetweentwo alternating
quantities.
OR
If the angular displacement between two waves are not zero, then that is
known as phase difference. i.e. at a particular time they attain unequal distance.

N4

OR

Two quantities are out of phase if they reach their maximum value or
minimumvalueatdifferenttimesbutalwayshaveanequalphaseanglebetween them.

HereV=V,sinwt

i=1,sin(wt-)

Inthiscasecurrentlagsvoltagebyanangle‘o’.
PhasorDiagram:
GenerationofAlternatingemf:-

Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt” is
placed n
x-axis in an uniform magnetic field of maximum flux density Bm web/nt’. The
coil is rotating in the magnetic field with a velocity of w radian / second. Attime
t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make
rotating in anti-clockwise direction and makes an angle ‘0’ with x-direction.The
perpendicular component of the magnetic field is ¢= on cos wt

AccordingtoFaraday’sLawsofelectro-magneticInduction

63
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=4

==N( & coswr)
da "

=—N(—Omwcoswr)
=Nwisinwt
=21 NOpsinwt(Quw=21f)
=27fNB,,Asinwt
e =F,,sin wt

Where E,=21NB A
f—frequencyin Hz
B.,—>Maximumfluxdensityin Wb/mt’

Nowwhen Horwt=90% =

En
re. E,=2nfNB_,A

=
%
A
[]
=
=

RootMeanSquare(R.M.S)Value:—

The r.m.s. value of an a.c. is defined by that steady (d.c.) current which
when flowing through a given circuit for a given time produces same heat as
produced by the alternating current when flowing through the same circuit for
the same time.

Sinuscdialalternatingcurrentis 1

=1, sin wt =1, sin O

Themeanofsquaresoftheinstantaneousvaluesofcurrentoverone

completecycle b

T2 m-0)
Thesquarerootofthisvalueis

_ fo‘z.d 0
2n

0

2 : 2
Jstm 0) 40
2n

0
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" o Isinzﬁ 0

_ iuﬁj v[n-'l;coszo"-‘a,e
V2n o\ 2 )

||" 2 &

= \; in I (1-cos2 0 )d0
710 ~sin2 0 Pr
w2,
[

AverageValue:—

65

The average value of an alternating current is expressed by that steady
current (d.c.) which transfers across any circuit the same charge as it transferred

by that alternating current during the sae time.
The equation ofthealternating currentisi= I;,sin0
1.d0
L= |
'0( L _0)

. [ Lnsing g :’ﬂsifle.de

0

:I’"_—iiis HJ":]’”[—cosn—(COSOO]

0

T
= b[1-0¢-1)]
T

v/

_2xMaximum Current

av

T
Hence,1,,=0.6371,

Theaveragevalueoveracompletecycleiszero
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Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of
maximum value to r.m.s value.
MaximumValue 1,
Ka= =" =1.414
. R.M.S.Value L, V2
V2

Formfactor:-Itisdefinedas theratioofr.m.svaluetoaveragevalue.

K ram.s.Value  _0.7071,_ J2 =1.414
Average.Value  0.6371,

Kf=1.11

PhasororVectorRepresentationofAlternatingQuantity: —
/“\
0

An alternating current or voltage, (quantity) in a vector quantity whichhas
magnitude as well as direction. Let the alternating value of current be
represented by theequation e = E,, Sin wt. The projection of E,, on Y-axis at any
instant gives the instantaneous value of alternating current. Since the
instantaneous values are continuously changing, so they are represented by a
rotating vector or phasor. A phasor is a vector rotating at a constant angular
velocity

Attye= Sinwty

Att2,62= mSiIDz/Vl‘z

AdditionoftwoalternatingCurrent:—

Lete,=E,sinwt
er=E,sin(wt—0) ” E
The sum of two sine waves of thesame frequency )
is another sine wave of samefrequency but of a o
different maximum value and Phase. ' = >

e= \/ e12+e2+2-2eeCQ§ ¢
PhasorAlgebra:—
Avectorquantitycanbeexpressedintermsof
(1  RectangularorCartesianform
(1))  Trigonometricform
(ii1)  Exponentialform

Prepared By Er. Sushree Sangeeta Panda



(iv)  Polarform

E=a+jb
=F(costHjsinb))
Where a = E cos 0is the active part
b = E sin ) isthereactivepart
0= tanlbi a} =Phaseangle

J N
—1(90%)*=—
1(180°%)
J=(270%)
7*=1(360°)

E sin g

(i) Rectangularfor:-
E=a +jb
tanti=b/a
(ii) Trigonometricform:-
E=E(cos(H;sint))
(iii) Exponentialform:-
E:Ee_'jl]
(iv) Polarform:-
E=E/+e (E= Nd*+b* )
AdditionorSubtration:-
E1=a1+jb1E2
:a2+jb2

E 1iE2:(a 1+a2)i(b1+b
Tibrebs

d=tan a+a

NI
Multiplication:-
Ex<Ey=(ar+jar)=(a+jb>)

=(aay—b1by)+j(arax+biby)

Ecose

67
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—1r.a1b2+b1612\" |
¢ =tan aa—bb

\ 12 12 )

E\=E, 2O,

E=FE,~0,
ExE>=EE; 70+,
Division:-

E\=E\/ O,

E=F,/ 0,

E_E 0= B0 -0

E E/0, E

A.C.throughPureResistance:—

68

LettheresistanceofRohmisconnectedacrosstoA.Csupplyofapplied voltage

& sinwgll ----------------- 4 (1)

Let‘’istheinstantaneouscurrent.
Heree=iR
=i = ¢e/R

i=E,Sinwt/R  =--=---eeem--

Q©

e = Emsin Wt or v = Vsin wt

Bycomparingequation(1)andequation(2)wegetalternatingvoltage and

current in a pure resistive circuit are in phase

Instantaneouspowerisgivenby P
= el

=E,,sin wt.I,sinwt

=E,.I,,sin’wt

:E’"I’”.2sin2wt
2

:E'”_.I'” .(1-cos2wr)
2

¢ = Emsin Wt
[ = [msin wt

—>

Prepared By Er. Sushree Sangeeta Panda



69

Where”s Lniscalledconstantpartofpower.
V2 2

VI . .
—n_neos2wrls calledfluctuatingpartofpower.
NERNG)

2

Thefluctuatingpart %coshvt offrequencydoublethatofvoltageandcurrent

waves.

HencepowerforthewholecycleisP= Voo

Sl

Vﬁ

2 rms " rms

— P=VIwatts

A.CthroughPurelnductance:—
Letinductanceof* L’ henryisconnectedacrossthe A.C.supply

"I_.l
L
v = Vmsin wt

VP SIAWE S - - - S il (1)

AccordingtoFaraday’slawsofelectromagneticinductancetheemfinduced across
the inductance

vl
i dt V = Vmsin wt
l.
_istherateofchange ofcurrent = 1 st — 21 2)
dt -
Vsinwt:Ldl e

" dt
di_ Vsinwidt WL
A Vusimwidt iy —

—di= V"isjnwt.dt
L
Integratingbothsides,

J‘ di= V.rstnwt.dt
V[ coswtj

1=

L w
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l.:_choswt
wL
Ly Vﬂ‘l
I=—_"COoswt
wL )
i=—"sinwt— =
L L EZ\J
=""sinwi— [QX=27fL=wL]
N L
M X 12J i}
axipymum valueof iis o
I = "when ? ) 1sunity.
m Sil’lIWt
X L2
Hencetheequationof currentbecomesi=/,sin(wt—n/2)
So we findthat ifapplied voltage isrep[resented by v=V,sinwt,thencurrent

flowing in a purely inductive circuit is given by
i=l,sin(wt—1/2)

Herecurrentlagsvoltagebyananglen/2Radian. A

Powerfactor =cos
=cos90°

=0 G

PowerConsumed= VI coso \
=VIx0
=0
Hence,thepowerconsumedbyapurelylnductivecircuitiszero.
A.C.ThroughPureCapacitance:—

Xp

i=1I_an{wt—=l2)
v = Vmsin wt

&

— NS
?, —ri— T

v = Vmsin wt

Letacapacitanceof ‘C”faradisconnectedacrosstheA.C. supplyof applied voltage

V=V SINWE == eee oo (1)
Let ‘gq’=changeonplateswhenp.d.betweentwoplatesofcapacitoris‘v’
q =cv

qg=cV,sinwt
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d d

_q=c (Vsin wr) dt
da "

i=cV,sinwt

=wcV,,coswt

m

= = coswt
1/we

_Va=coswt [Qx_1_1

Xc ° we

in ohm. ]
=[,,coswt

=I,,sin(wt+1/2)

2nfc

isknownascapacitivereactance

Herecurrentleadsthesupplyvoltagebyananglen/2radian.

Powerfactor =cos O
=cos 90° =0

Power Consumed= VI cos ¢
=VIx0 =

Thepowerconsumedbyapurecapacitivecircuitiszero.

A.C.ThroughR-LSeriesCircuit:—

L
" (U0
—W\
< VR £ VL ———
Fo_3
L

e=FE_gn wt

TheresistanceofR-ohmandinductanceoflL-henryareconnectedinseries across the

A.C. supply of applied voltage

()

e=FE, sinwt

V= VR+j VL ( XL \

:\/(_LR;LP@S'_)iéd) tan) )

x gl

\/RAJF ‘h =tan _J
V=IZ /{ =tan™’ (4
)

Vi=IXo
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WhereZ= . R*+X,*

=R+jX;1sknownasimpedanceofR-LseriesCircuit.
V. E,sinwtZ

2
=1, sin(wt—i)

Herecurrentlagsthesupplyvoltagebyanangleo.
PowerFactor:—Itisthecosineoftheanglebetweenthevoltageandcurrent.
OR
Itistheratioofactivepowertoapparent power.
OR
Itistheratioofresistancetoinpedence.
Power:—
=V.i
=V sinwt. I, sin(wi—0)
=V ul,sinwt.sin(wi—0)

1
- ; fn 2sinwt.sin(wt—0)
1

o [cosd —cos2(wt=)] b

Obviouslythepowerconsistsoftwoparts.

(i)  aconstantpart Vicospwhichcontributestorealpower.
2)71)71
¥ . 1 ' .
(i)  apulsatingcomponent Vicos(2wz—0)whichhasafrequencytwice
2mm
that of the voltage and current.It does not contribute to actual power since

itsaverage value over a complete cycle is zero.
Henceaveragepowerconsumed

1
= Vlcosh
2mm

Pip
g7 7
=VIcos(

WhereV &lIrepresentsther.m.svalue.
A.C.ThroughR-CSeriesCircuit:—
Theresistanceof*R’-ohmandcapacitanceof*C’faradisconnectedacrossthe
A.C.supplyofappliedvoltage
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e=FE, sinwt (1 )

R ¢

AAAA
LAL A

* Vr * Ve

' 4

—
NS
V= VR+(—j Vc)
=IR+(—jIXC)
=I(R—jXc)
V=IZ

WhereZ=R—jX~= JR*+Xx2 isknownasimpedanceofR-Cseries Circuit.
Z=R—jX¢

S =0 =tani CR +)\(C
v :

V=IZ."—0

__‘»I:—VA

> NS

_E,sinwtZ
20
/5
= "sin(wit+0)
Z:
—I=I,sin(wi+()

Herecurrentleadsthesupplyvoltagebyanangle‘o’.
A.C.ThroughR-L-CSeriesCircuit:—
Letaresistanceof*R’-ohminductanceof*L’henryandacapacitanceof*C’
faradareconnectedacrosstheA.C.supplyinseriesofappliedvoltage

e=E, SINWE = -ccceoe . (1)
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e=VptVi+Ve
=VrtjVi—jVc
=Vrtj(Vi=Vc)
=Irtj(IX;~1Xc)
=I[R+i(X;,—X,
_1[ +J( L C)] : o (XL_XC \
=l — ~ /*¢ =tan
JR+(X-X ) LT J

=IZ/ +

Where  7=1 |R*+(x,-x,) ° isknownastheimpedanceofR-L-CSeries
Circuit.

Ifx;-Xc,thentheangleis+ve. Ifx;-

Xco.then the angleis-ve.
Impedanceisdefinedasthephasorsumofresistanceandnetreactance

e=IZ /+¢
Z/+ ; ZZ+

(1)  If xp-Xcthen P.f willbe lagging.
(2)  If x;<xcthen,P.fwillbe leading.
(3) If X;=Xthen,thecircuitwillberesistiveone.Thep.f.becomesunity
andtheresonanceoccurs.

REASONANCE
It is defined as the resonance in electrical circuit having passive or active
elements represents a particular state when the current and the voltage in the
circuitismaximumandminimumwithrespecttothemagnitudeofexcitationat a
particular frequency and the impedances being either minimum or maximum at
unity power factor
Resonanceareclassifiedintotwotypes.
(1)  SeriesResonance
(2)  ParallelResonance
(1) SeriesResonance:- Letaresistanceof*R’ohm,inductanceof*L’
henryandcapacitanceof*C’faradareconnectedinseriesacrossA.C.supply
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P
=/
e=E_gn wt

e=FE,,sinwt

Theimpedanceofthecircuit
Z=R+j(X=X0)]

Z= \/R2+(XL_ )

2

Theconditionofseriesresonance:
Theresonancewilloccurwhenthereactivepartofthelinecurrentiszero Thep.f.

becomes unity.
The net reactance will be zero.
The current becomes maximum.
Atresonancenetreactanceiszero
Xi—Xc=0
= X=Xc
—WL= L
° w,.C
—W,2LC=1
;»szl

0 L_
=W,=

e
.
JLC

o=
J 2n+ LC (1

Resonantfrequency(f)=".

o

ImpedanceatResonance
ZO =R
CurrentatResonance
V
1= -
° R
Powerfactoratresonance
R R

Z, R

2n JLC

[Qz=R]
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ResonanceCurve:-

Unity p.f.(u.p.f) lo

Lagging
Pt

fo

At low frequency the X, isgreater and the circuit behavesleading and

at high frequency the X; becomes high and the circuitbehaves lagging
circuit.
Iftheresistancewillbelowthecurvewillbestiff(peak).
o If the resistance will go oh increasing the current goes on decreasing and
the curve become flat.
BandWidth:—
At point ‘A’the power lossis [)°R.

Thefrequencyisfywhichisatresonance. |
'R
Atpoint‘B’thepowerlossise

2

Thepowerlossis5S0%ofthepowerlossatpoint

A

‘A”/ Io / \
B :

L 1
£ o £

Hencethefrequencies
correspondingtopoint‘B’isknownashalfpowerfrequenciesf; &f-.
fi=Lowerhalfpowerfrequency

fi=fo- R
4nL
Fy=Upperhalfpower frequency

4rL

Band width(B.W.)isdefinedasthedifferencebetweenupperhalfpowerfrequency

ad lower half power frequency.

BW= = &
2nL

Prepared By Er. Sushree Sangeeta Panda



77

Selectivity:—

SelectivityisdefinedastheratioofBandwidthtoresonantfrequency
. . _BW._R
Selectivity=""=" ___ Selectivity=
Jo 2nL 27f,L
QualityFactor(Q-factor):—
It isdefined asthe ratio of2rxMaximum energy storedto energy dissipated per

cycle

2:T><1L12
~ 0
—factor = #

Q IRT

L)
" PRT
_nL.2P
 PRT
_nL2P
~ PRT
2t

RT

: __ ol [ 1-:
Qualityfactor== " |LQ:_ fol ]

Qualityfactorisdefinedasthereciprocalofpowerfactor.

Qfactor== s
COS()
Itisthereciprocalofselectivity.

Q-factorOrMagnificationfactor

_Voltageacrossinductor.

Voltage across resistor
_LoX;
IR
XL
R
oL_WoLR
_——

2

1

L
Q-factor=—= ’
R

Q-factorfactor _VoltageacrossCapacotor.
Voltageacrossresistor

L,
IoR
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I
27/,C  2nfyCR

Q-factor= !
WoCR
Q2:W0L % 1
R W,CR
> 1
RC
1
9=\ rc
L]
RrR\C
GraphicalMethod:—

(1) Resistanceisindependentoffrequencyltrepresentsastraightline.

(2) InductiveReactance  X;=2nfL

It is directly proportional to frequency. As the frequency increases ,
Xpincreases

(3) CapacitiveReactanceX ==
2nfC

f —

It is inversely proportional to frequency. As the frequency increases,

Xcdecreases.
When frequency increases, X;increases and Xcdecreasesfromthe

highervalue.
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fo

- Xc

-0

N/
-Xc

Atacertainfrequency.X; =Xc
ThatparticularfrequencyisknownasResonantfrequency.
Variationofcircuitparameterinseriesresonance:

(2) Parallel Resonance :- Resonance willoccur when the reactive part of the
line current is zero.

a""r

o
-t

At resonance,

I—Ising=0

[CZILSil’l(b

V— .
»—= sin ¢
Xc R*+X?
s vooox X L
Xe || R4, JR4X Ticos 4

1
= = )(L ILSmd)\K
2 2
Xe R+X° i
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fi=Resonantfrequencyinparallelcircuit.
Current at Resonance =/;cosd

v R
Bax2 A Rx?
_ IR

CRAX7,

VR

ey

e &y

LIC  LIRC

_ \

Dynamic Impedence

L/RC—DynamicImpedanceofthe circuit.

or, dynamic impedances is defined as the impedance at resonance frequency in
parallel circuit.

ParallelCircuit:—

Theparallelresonancecondition:
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Whenthereactivepartofthelinecurrentiszero. The
net reactance is zero.
Thelinecurrentwillbeminimum.
The power factor will be unity
Impedance Z=R+iX,
Z,=R—jXc
AdmittanceY,= 1
Z,  R+HX,
_ (R1+X1)
(Rt XD)(Ri—XL)

Rl +X

L

Y- F—Z_R%_ 7k *;
R1 +X 3 R12+X2 ’
S Rl
Z, R+ JXc
r (Ro+iXc)
(R21—jXc)(Ro+  JX0)

_EzTLw X)
T R+X

AdmittanceY

C

Ry o B9 c
1 Rty 1
2 2

C (<

Total Admittance Admittance (é\ ! ]
\

—Z +Z
) 1 2
—=Y=Y; 1+Y 2
Rl__ ‘X;‘ + R2 +] XC
== p.¥ B RiXa B
1 /5 1 L 2 C
R, R2 N X A 3
= Yepo TR —— LR2+X2— Rx—— J
R2+X? :
At Resonance,
__x,_ R
R*+X* RFX
1 L 2 C
X Xc
RH+X" |, = RA+X
X(R+x?)=x(R+x°
S L2 5,0 ¢ 1 1 1t 2
=l R+ 1= S )
| > 4ere | o2 !
LR +L R 2n
= 2TYfLR? e =1
Z.LfCZ W sz
C
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fiscalledResonantfrequency.
[fR*=0

1 [L-CR,?

Thenf= Ak T

1 |L-CR*,
&\ C
1 [T
ZrbliCe

1 -

"Nk o

1 [L R
— .
2n\VLC ~ I?

IfR;andR,=0,then
1 L
2n\ L°C

ol T
2tV LC  27nyLC

ComparisonofSeriesandParallelResonantCircuit:—
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Item Seriesckt(R-L-C) Parallelckt(R-Land C)

% ImpedanceatResonance Minimum Maximum
% CurrentatResonance : 4 . .

Maximum=g Minimum=z,/cr)
s Effectivelmpedance R L

CR

< P.f.at Resonance Unity Unity
o 1 e
* ResonantFrequency ¥ = lz,rc lL _CR =
% ItMagnifies Voltage Current
% Magnificationfactor % %

Parallelcircuit:—
Ii Ri mml
B L
e .
L

v.f

21=R1+jXL= \ R12+XL2 -”—/¢1
Z=Ri—Xc= R22+X 2/,
V

%
I= = Z —(PZI 4':—(|)
1

VAL —Z1
1 1
Wherez%’
Z, :

HereY,—Admittanceofthecircuit

1 1
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Admittanceisdefinedasthereciprocalofimpedence.
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J=VY= v
YU Ryix
14 14
E 2 =YY b=h s
L T i=VY2/ p=1 b
Iz

I= \[12+1?  +2LDLcos(Pr+2 )

EL—1+ /2

T o,

o I eceaho+ I cosp, A

The resultant current “I” 1s the vector sum of the branch currents [;&
I,can be found by using parallelogram low of vectors or resolving I,into their X
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—andY -components(oractiveandreactivecomponentsrespectively)andthen by
combining these components.

Sumofactivecomponentsofl;andl,=I;cosp, +1,cos0,

Sumofthereactivecomponentsofl,andl,=I,sind,-I;sind,

EXP-01:
A60Hzvoltageof230Veffectivevalueisimpressedonaninductanceof
0.265H
(1)  Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero
axis of the voltage wave be att= 0.
(i)  Showthevoltageandcurrentonaphasordiagram.
(1) Findthemaximumenergystoredintheinductance.
Solution:-
V= N2V= 2 %230V
f=60Hz, W=2rf= 21<60=377radls.
xX=wl=377x0.265=1002

(i) Thetimeequationforvoltageis V(t)=23025in377[

J2

I =V /x =230"V°/100.=23 3
0=90°(lag).
QCurrentequationis.
i()=2.32sih(377-11/2)
or =2.320s377t
(1) It 1 1
(iii) OrE = LPm= _ x0.265<(2.32)p=1.4J
. 7
Example-02:

The potential difference measured across a coil is 4.5 v, when it carries a
direct current of 9 A. The same coil when carries an alternating current of 9A at
25 Hz, the potential difference is 24 v. Find the power and the power factor
when it is supplied by 50 v, 50 Hz supply.

Solution:

LetRbethed.c.resistanceandLbeinductanceofthecoil.

R=V/I=4.5/9=0.5C2
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Witha.c.currentof25Hz,z=V/1.

245 660
9

x= NZ2-R>  =4/2.66-0.5
—2.620)

X7 =21x25xL
x; =0.0167Q2

At50Hz
X; =2.62x2=5.240)

Z= 0.5%+5.24°
=5.06 Q
[=50/5.26 =9.5A
P=I"/R= 9.5°x0.5=45watt.
Example—03:
AS50-ufcapacitorisconnectedacrossa230-v,50—-Hzsupply. Calculate
(a)  Thereactanceofferedbythecapacitor.
(b)  Themaximumcurrentand
(¢)  Ther.m.svalueofthecurrentdrawnbythecapacitor.
Solution:
1

@ x_l= — 1 =63.6)
' we 2mfe 2m50x50%107°

(¢)  Since230vrepresentsther.m.svalue
Q7,,s=230/x=230/63.6=3.624

b) L=l x 2 =362x2=5114

~ram.s

Example—04:
In a particularR —L series circuita voltageof 10v at50 Hzproduces a

current of 700 mA. What are the values of R and L in the circuit ?
Solution:
(i)  Z= JR+@ = x50L)
=\ R*+98696L°
V=1z
10=700x107  \/(R>+98696L°)
J(R+986961%)  =10/700x107°=100/7
R*+98696L*=10000/49 )
(ii) InthesecondcaseZ= /R (2 m x75L)
Q10=500<10" /R*+222066L%) =20
JR+222066L%) =20
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R*4+222066L°= 400 === == mm e (1)
SubtractingEa.(I)from(ii),weget,
222066L*~98696L*=400—(10000/49)

—+123370L°=196

........... 1= 196
' 123370
123370
SubstitutingthisvalueofLinequation(ii)weget R242220661%(0.398=400
—=R=6.90).

Example—04:
A 20Qresistor is connected in series with an inductor, a capacitor and an

ammeter across a 25 —v, variable frequency supply. When the frequency is
400Hz, the current is at its Max™ value of 0.5 A and the potential difference
across the capacitor is 150v. Calculate
(a) Thecapacitanceofthecapacitor.
(b) Theresistanceandinductanceoftheinductor.
Solution:
Sincecurrentismaximum,thecircuitisinresonance.
x=V/1=150/0.5=300Q2
(@)  x=1/2nfe=300=1/21x400xc
—se=1.325x10"%£=1.3251f.
(b)  x=x=150/0.5=300¢)
2mx400 x L=300 —
L=0.49H
(c) Atresonance,
Circuitresistance=20+R

— V/Z =2510.5
...... sR =300
Exp.-05

An R-L-C series circuits consists of a resistance of 1000(), an inductance
of I00MH an a capacitance of wpuuf or 10PK
(i)  Thehalfpowerpoints.
Solution:

f : 10° 159K H:
. D= =—= z
i) 2731070 2¢

Prepared By Er. Sushree Sangeeta Panda



<« 110 oo
R 1000 10"~

1000

fo— _ =159x10°- — =I582KH:
iii) 47l 4r<10”
£~ =1591974 — =159.8KH.
47/ 4mx10
Exp.-06

Calculatetheimpedanceoftheparallel-turnedcircuitasshowninfig.
14.52 at a frequency of 500 KHz and for band width of operation equal to 20
KHz. The resistance of the coil is 5Q2.
Solution:

At resonance, circuit impedance is L/CR. We have been given the valueof
R but that of L and C has to be found from the given the value of R but thatof L
and C has to be found from the given data.

BW=220:10*>————0r1=39H,
2n/ 21l
. /IRZL\/ Tk §
2t VLC L 27\39K0°°C (39K °)
C=2.6x10"
Z=L/CR=39x10"°/2.6x107x5
=3x10°Q)

Example: A coil of resistance 20€2 and inductance of 200uH is in parallel with
a variable capacitor. This combination is series with a resistor of 8000Q2.The
voltage of the supply is 200V at a frequency of10°H;.Calculate

1) thevalueofCtogive resonance

i1) the Qofthe coil

ii1) thecurrentineachbranchofthecircuitatresonance

Solution:

X =2nfL=27*10°*200%10°=1256Q
Thecoilisnegligibleresistanceincomparisontoreactance.
1
2y EC

=
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L

1F =
2rv20@ s O 1007

ii) Q=22 = 27 = 10% 200 = 1jﬂ"‘=62.8

iii) dynamicimpedanceofthecircuitZ=L/CR=200*10"°/(125*10"
12420)=80000Q2

totalZ=80000+8000=88000£2

[=200/88000=2.27mA

p.d across tuned circuit=2.27*10

%80000=181.6Vcurrentthroughinductivebranch=

1516 .
100t1z55% 144.5mdcurrent through capacitor branch=

wl’C
=181.6*21*10°*125*%107°=142.7mA

POLY-PHASECIRCUIT

Three-phasecircuitsconsistsofthreewindingsi.e.R.Y.B

=% —

Es

SN
&

Ev

Er=E,sinwt=E,,- 0
Ey=E,sin(wt—120)=E,,-—120
Eg=E,sin(wt-240)=E,,.—240=E,,./120
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3-¢Circuitaredividedintotwotypes
¢ StarConnection
e DeltaConnection

StarConnection:—

91

"Ry

- Neutral

Vyn

If three similar ends connected at one point, then it is known as star connected

system.

The common point is known as neutral point and the wire taken from the
neutral point is known as Neutral wire.

PhaseVoltage:—

ItisthepotentialdifferencebetweenphaseandNeutral.

LineVoltage:—

ItisItisthepotentialdifferencebetweentwophases.
RelationBetweenPhaseVoltageandLineVoltage: —
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VeN - VN

VN

LineVOIatage Veyv=Van=VynVi=

[

Vet Viy=2VenVinCops60°
= \/Vj+th_§]V RN}VYNXO%S‘

phph

=\/ﬁ :\/gVPh
Vi= \/;VPh

SinceinabalancedB—phasecircuitVrn=Vyn=Ven=Von
RelationBetweenLinecurrentandPhaseCurrent:-

In case of star connection system the leads are connected in series
witheach phase

Hencethelinecurrentisequaltophasecurrent I,

=L
Powerin3-Phasecircuit:-

P= Vp hlp hcosd)perphase

= Vp hlp jeosofor3 phase

L
=3 =
— c0s¢(QVL = ﬁVph

3L
P= 3V, I,cosd

Summariesinstarconnection:
i) Thelinevoltagesarel 2 0“apartfromeachother.

ii) Linevoltagesare30¥aheadoftheirrespectivephase voltage.

ii1) Theanglebetweenlinecurrentsandthecorrespondinglinevoltageis 30+
iv) Thecurrentinlineandphasearesame.

DeltaConnection:-
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B A
f 'J-mlll
‘“{ \
& —-lqp \
Ho—t ]‘_1"-'-"
T J

If the dissimilar ends of the closed mesh then it is called a Delta
Connected system
RelationBetweenLineCurrentandPhaseCurrent:-

- -
Line Currentinwire — 1=R-Y
- -
LineCurrentin wire -2="Y—'B
- -

Line Currentinwire—3='B—'R

I =Ir-1Iy

- \/1R2+I - —2Ixlyc0s60 °

1
=\/ I ) B =

2 ’ 2
= 31Ph ’]L: 3Inh

I, =+/3L,

RelationBetweenLineVoltage&PhaseVoltage: —
Vi=Vp

Power== /3V,L,cosd

Summariesindelta:
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l) Llne Currentsarel 2 D‘;:-ap al"tﬁ‘O meaChOther.

ij) Linecurrentsare3 0*behindtherespectivephasecurrent.
iii) Theanglebetweenthelinecurrentsandcorrespondinglinevoltagesis30+¢
easurementofPower:—

(1) Bysinglewatt-metermethod

(2) ByTwo-wattmeterMethod

(3) ByThree-wattmeterMethod
MeasurementofpowerByTwoWattMeterMethod :-

PhasorDiagram:-
LetVg,Vy, Vgarether.m.svalueof3-dvoltagesandly,ly,Igarether.m.s. values of the
currents respectively.
CurrentinR-phasewhichflowsthroughthecurrentcoilofwatt-meter W, =

I
And W2:IY
Potentialdifference acrossthevoltagecoilofW,=Vzs=Vz—V3

And Wry=Vyg=VyV3
Assumingtheloadisinductivetypewatt-meterWreads.
W\=Vgplrcos(30—0)

W=V I;cos(30—0) (1)
WattmeterW,reads

Wr=Vyplycos(30-+()

W=V I1cos(30+p)  -----ommmao 2)

Wi+ W=V I.c08(30—0)+V I cos(30+)
=V 1;[cos(30—0)+V 1;cos(30+D)]
=V, 1,(2c0s30°cosh)

1, 1,(2:30950)
2

W+ W= \/gVLILCOS d) --------------------- (3)
W—Wy=VI;[cos(30—))—cos(30+()
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=V,1,(2sin30%sind)

I .
1, @x _x sind)
2

Wi=W=VIsind
V_Vl_ WZ_ VL J L Sil’l O
Wi+W,  3Vilcosh

95

%tanch |
3=, |l
—»tan ¢ = \/_ W+W
1 2
1 B
¢ =tan [ _WW
NEREY
Variationinwattmeterreadingwithrespecttop.f:
Pf W reading Wyreading
©=0,cosp=1 +veequal +veequal
=60,cosp=0.5 0 +ve
©=90,cos@=0 -ve,equal +veequal
Exp. :01

A balanced star — connected load of (8+56). Per phase is connected to a
balanced 3-phase 100-v supply. Find the cone current power factor, power and

total volt-amperes.
Solution:
Zy= 846"

=102

Vi=400/ 3 =23/v
L=Vl Z,i=231/10=23.14

[=Z3=23.1A

P.f=cost=R,/z,,=8/10 =0.8(lag)

PowerP= \/g ViIicost)

= \/g . 400x23.1x0.8
=12,800watt.
Totalvoltamperes= V3V I
=\3x400x23.1
=16,000VA.
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Exp.-02
Phase voltage and current of a star-connected inductive load is 150V and

25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-
wireand power is measured using two watt meters, find the readings of watt
meters. Solution :

Von = 150V

V=133 x150

Ln=1.=25A

Total power =\3 Vil cosd =\3x150x\3x 25x0.707=7954watt.
W; + W, =7954.00, cos o= 0.707
b =cos™ (0.707) = 45°, tan 45° =1
Nowforalaggingpowerfactor,

tand= ~/3(Wi— W)W +W>)
(m-m)|

==
ﬁ‘{ 7954 )

AA(W—=W2)=4592w
From(i)and(ii)above,we get
W,=6273w W,=1681w
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TRANSIENTS

Whenever a network containing energy storage elements such as inductor or capacitor is
switched from one condition to another,either by change in applied source or change in
network elements,the response current and voltage change from one state to the other
state.Thetimetakentochangefromaninitial steadystatetothefinalsteadystateisknown as the
transient period.This response is known as transient response or transients.The response of
the network after it attains a final steady value is independent of time and is
calledthesteady-stateresponse.Thecompleteresponseofthenetworkisdeterminedwith the
helpofa differential equation.

STEADYSTATEANDTRANSIENT RESPONSE

In a network containing energy storage elements, with change in excitation, the currents
and voltages in the circuit change from one state to other state. The behaviour of the
voltage orcurrent when it is changedfrom one state toanotheris calledthe transient state.
The time taken for the circuit to change from one steady state to another steady state is
called the transient time. The application of KVL and KCL to circuits containing energy
storageelementsresultsindifferential,ratherthanalgebraicequations.whenweconsidera
circuit containing storage elements which are independent of the sources, the response
depends upon the nature of the circuit and is called natural response. Storage elements
deliver their energy to the resistances. Hence, the response changes, gets saturated after
some time,and is referred to asthe transient response. When we consider a source acting
on a circuit, the response depends on the nature of the source or sources.This response is
called forced response. In other words,the complete response of a circuit consists of two
parts; the forced response and the transient response. When we consider a differential
equation, the complete solution consists of two parts: the complementary function and the
particularsolution.Thecomplementaryfunctiondiesoutaftershortinterval,andisreferred to as
the transient response or source free response. The particular solution is the steady state
response, or the forced response. The first step in finding the complete solution of a circuit
is to form a differential equation for the circuit. By obtaining the differentialequation,
several methods can be used to find out the complete solution.

DCRESPONSEOFANR-LCIRCUIT

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the
circuit is initially uncharged and is in series with the resistor.When the switch S is closed
,we can find the complete solution for the current.Application of kirchoff’s voltage law to
the circuit results in the following differential equation.

g R
)(\ v

) 3

| 4+
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Figure 1.1
. dE
V=Ri+ L; ....................................................................... 1.1
Gl .
Ord—+r"|=_. ..... et e e e e e e e e e e e e e e e e e e e e e 1.2
F L L

Intheabove equation , the currentl is the solution to be found and V is the applied constant
voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchS isclosed.Theaboveequation is a
linear differential equation of first order.comparing it with a non-homogenious differential
equation

o

Wherecisanarbitraryconstant.Inasimilarway,wecanwritethecurrentequationas

=F CRY R
A =Tt —i=lz ¥ =l
i=ce 't + e IEEKL' dt
] — &8 v
Hence,1=C& i/ +......... e 1.5
d

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in
Fig.1.1,theswitchsis closed at t=0.att=0-,i.e.just beforeclosing theswitchs,thecurrent in the
inductoriszero.Sincetheinductordoesnotallowsuddenchangesincurrents,att=o+ just after the
switch is closed,the current remains zero.

Thus att=0,i=0

Substitutingtheaboveconditioninequationc,wehave 0 =

Substitutingthevalueofcinequationc,weget

. ¥ W TR
1=——¢& i
LA 1t

v ZRt
= {51-5‘ L)

it e
i=15(1-¢"T )(wheref, = =1
i=fD(1-€_f.)(where T=Time Eﬂﬂ&?&?&?:% Jeureeneeureeneeeens e 1.6
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0 1 2 3 4 5 8 1C
Figurel.2

=fc
Equationdconsistsoftwoparts,thesteadystatepartifz =V/R)and thetransientpart’.g ¢ .

WhenswitchSisclosed ,theresponsereachesasteadystate valueaftera timeintervalas shown in
figure 1.2.

Here the transition period isdefined as the timetaken for the current toreach its final or
stedy state value from its initial value.In the transient part of the solution, the
quantityL/Ris importantindescribingthecurvesincel /Risthetimeperiodrequired for the
current to reach its initial value of zero to the final value {,=V/R. The time

constant of a function i_¢ I is thetimeatwhich theexponentofeisunity,wheree is the
base of the natural logarithms.The term L/R is called the time constant and is denoted
by t.

L
So,T= sec
iz

Hence,thetransientpartofthesolutionis

p —HE T

i = - ;E:‘T = ——E'_T
B i

AtoneTimeconstant,thetransienttermreaches36.8percentofitsinitial value.

1

i(t)=- —(e :-'-_5'_&,-1 =-0.368%

Similarly,

i(20)=-2472 =-0.135 *
i(31)=-L -2 =-0.0498i',%
i(51)=-Z;-= =-0.0067=

Frd L

After5TCthetransientpartreachesmorethan99percentofitsfinal value.
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InfigureAwecan findoutthevoltagesandpowersacrosseachelementbyusingthecurrent.

Voltageacrosstheresistoris

o =il
vs=Ri =Rx ~(1-6T)

-H¢
Hence, Vz=V (1-¢'1)

Similarly,thevoltageacrosstheinductanceis vi=

iy by

&t " e e

L—=L_»=¢ L =Ve¢i

TheresponsesareshowninFigure1.3.

Figurel.3
Powerintheresistoris
Pr=UVpi=V(1-# L)1l — g x-2e:)+

. il
e @' L
— (1-
Powerintheinductoris
=it it
Pi=1i =Ve'T x = L= &L )
i =HE =R
= R[-? -5 L)

Theresponsesareshowninfigurel.4.
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Py
0 1 2 3 4 5 B TG

Figurel.4

Problem:1.1

30Q
s
A\ Ny

aot i 34

Figurel.5

AseriesR-LcircuitwithR=30Qand L= 15 Hhasaconstant voltageV=50Vappliedatt=0as
shown inFig.1.5 .determinethecurrent i,thevoltageacrossresistorandacrossinductor. Solution :

ByapplyingKirchoff'svoltageLaw,we get

15244301 =60
(g
=>212i=4
£

Thegeneralsolutionforalineardifferentialequationis i=c

el 1 R0
&

e PRt [ Kafh(t
where P=2,K=4
puttingthe valuesi=c
e e [ 4e”idt

=I=j=ce"+2
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Att=0,theswitchs isclosed.

Sincetheinductorneverallowssudden changein currents.At t=0"thecurrent in thecircuit is zero.
Therefore at t=07,i =0

=2>0=c+ 2

==c=-2
Substitutingthevalueofcinthecurrentequation,wehave
i=2(1-e7*9)A
voltageacrossresistor(Vgs)=iR=2(1-e7*F)x30=60(1-e"=%) v

voltageacrossinductor( ¥z)= LEi:_}5 * éz (1-e739)=30xIs""tv= e ="

DCRESPONSEOFANR-CCIRCUIT

Consideracircuitconsistingofaresistanceand capacitanceasshowninfigure.The capacitorin the

the complete solution for the current.Application of kirchoff’s voltage law to the circuit results in
the following differential equation.

A :
o—————AAA

v !
T — C
i@
Figurel.6
I | ;
V=R|+E.fi‘:ﬁ“ ....................................................................... 1.7
Bydifferentiatingtheaboveequation,weget
L S S 18
de €
Or
B+ 2020 s 1.9
d¥ RC
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Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular solution
for the above equationis zero. The solution for this type of differential equationis

OO

. [
FZCE T NRE e 1.10

To determine the value of c in equation c, we use the initial conditions .In the circuit shown in
Fig.theswitchsisclosed att=0.Sincethecapacitordoesnot allow suddenchangesinvoltage,it will act

as a short circuitat t=o+ just after the switch is closed.

Sothecurrentinthecircuit att:0+is'f_:Thus at

t = 0,the current i =1

Substitutingtheaboveconditioninequationc,wehave .'_'= C

Substitutingthevalueofcinequationc,weget

TC

Figurel.7

WhenswitchSisclosed,theresponsedecaysasshowninfigurre. The
term RCis called the time constant and is denoted by t .
So,t=RCsec

After5 TCthecurvereaches99percentofitsfinalvalue.

InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage

across the resistor is

Prepared By Er. Sushree Sangeeta Panda



=

vz=Ri =R — gL

=iy

Hence, rp=V gic

Similarly,voltageacrossthecapacitoris v

ol

1
==|{ds
24

1pe¥ =B
=== ehC dr
=[§ ¥ RC eFT '1|+c

:-V€E+C

Att=0,voltageacrosscapacitoriszero
So,c=V
And

Ve=V £l — BC)

Theresponsesareshownin Figurel.8.

e ke e el e

vc

Ur

0 1 2 3 4 5 8 TC
Figure1l.8

Power in the resistor is

=L =

ngrﬁi :VE,E g iﬁ,‘i,‘_ﬁ__

=v¢i =V (1- §RE) _ eRE

104
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Problem:1.2

105

A series R-C circuitwithR=10Qand C=0.1 F has aconstant voltageV=20V appliedatt=0 as shown
in Fig. determine the current i, the voltage across resistor and acrosscapacitor.

= 0.1F

Figure1.10
Solution:

ByapplyingKirchoff’svoltageLaw,we get
1 [' 1
10i + 55 J1dt=20
Differentiatingw.r.t.tweget
10=4+—=0
L

&
—‘+1=0

==

&=

Thesolutionforaboveequation is
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Att=0,theswitchsisclosed.

106

Sincethecapacitorneverallowssuddenchangeinvoltages.Att=0"thecurrent inthecircuit is i =

V/R=20/10=2 A
.Thereforeatt=0,i=2A

=2the current equation isi=2¢"

voltageacrossresistor( Vz)=iR=2e"x10=20e""v

P

voltageacrosscapacitor(V:)= V{1 = QR_IEfl:ZO(l'E_ v

DCRESPONSEOFANR-L-CCIRCUIT

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The

switch Sis closed at t=0 , we can find the complete solution for the current.Application of

kirchoff’svoltagelawtothecircuitresultsinthefollowingdifferential equation.

i< = c

Figurel.11

. IS A
V=Ri +L E‘l R e eeesiresneaes 1.12

Bydifferentiatingtheaboveequation,weget

0=R§+Laf AL A2 st 1.13
Or
T 1.14
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The above equation c is a second order linear differential equation with only the complementary
function.Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationforthis type of
differential equationis

P 1
e S 1.15

Therootsofequationl.15are

E'llD::—l—i ! i:[- _l

LY NIk

R I ey B
Byassuming‘rfiz- an_<_i_"‘l2=1,' (ﬂ—llr —

ﬂl = H'l T .I"I.r:andﬂ:: .Ilfj “'.II'LT:
HereH:maybepositive,negativeorzero.

Case I :Hig b Fustbive(£) >~

Then,therootsareReal and Unequaland giveanoverdampedResponseasshowninfigure 1.12.

The solution for theaboveequationis:i =C, g\ ¥ ziiq C glittain

A

Figure1l.12

Case Il :K; iz Negative LET 3 =

Then,therootsareComplexConjugate,andgiveanunder-dampedResponseasshownin
figurel.13.
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Figurel.13

Thesolutionfortheaboveequationis:i=#*{C; cozl,t +C; sin K t)Case I :

Then,therfﬁ{).f‘sai'eﬁqué-%inagWe%nCritically-damped Responseasshowninfigure1.14.

if

Figurel.14
Thesolutionfortheaboveequationis:i=e™£C, + T3t}
Problem: 1.3

AseriesR-L-CcircuitwithR=20Q,L.=0.05HandC= 20 pFhasaconstantvoltageV=100 V
appliedatt=0asshowninFig.determinethetransient currenti.

L

100 V5

Figure1.15

Solution:
ByapplyingKirchoff’svoltageLaw,we get

100:301&05;—14. _ 1 riar

20 138"

Differentiatingw.r.t.twe get

1
20 10E

0,056 25 fde+20 E_ + i=0
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=g ifdr*+400

" 110%=0

&

=2 (*+400D+L0%i=0

Therootsofequationare

| Ly 3
_ 400, [fec0V® .
ByDy=-=1 [(T) - 10°

J 4

=-2004/ (20007 = 10F
Iy =-200+j979.8
13 =-200-j979.8

Thereforethecurrent

j =eTRE[C coaK, v+ CoooaK, 2]

j =eTEE| G coz979.8 8 + Coaln 97988 1A

Att=0,theswitchs isclosed.

Sincetheinductor neverallows sudden changein currents.Att=C"thecurrent in thecircuit is zero.

Therefore at t=07,i =0

=i =0 =(1)IC; coz 0+ C; 2ln 0]

== (4=0 andi=&"=“*[C; sin 2798t ]A

Differentiatingw.r.t.twe get

Gl

— =, [¢~20%070,8 c0297 9.6 £ + o~ 200} —200)sin 979.8¢ ]

ar

Att=0,thevoltageacrosstheinductoris100V == L%

=100 0 Z—= 2000
Att=02=2000= C#72E w0

- Suw
=7 Li=5772.04

Thecurrentequationis

109
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i= 29852, 0dain 979,600 4

ANALYSISOFCIRCUITSUSINGLAPLACETRANSFORMTE
CHNIQUE

TheLaplace transform is a powerful Analytical Techniquethat is widely used to study the
behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedomain
function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation
converts the frequency domain function F(s) back to a time domain function f(t).

TR Gy (T L LT1

£ F(s)} = (). =M 5, 5 ARl ... Wi N0 LT2

DCRESPONSEOFANR-LCIRCUIT(LT Method)

Let usdeterminethesolutioniofthefirst order differential equationgivenbyequationAwhich is for
the DC response of a R-L Circuit under the zero initial conditioni.e. current is zero, i=0 at t=0"
and hence i=0at t=9"in thecircuit in figure A bythe property of Inductance not allowing the
current to change as switch is closed at t=0.

Xe__\B,
vyt | D af.

FigurelLT1.1

V:Ri+L§ ....................................................................... LT1.1

TakingtheLaplaceTransformofbothesidesweget,

S=RI(S) + L[S 1(5) ~1(0) i LT1.2

- L,.:R I(s)+L[sI(s)] (I(0)=0:zeroinitialcurrent)

= I(s)[R +L s]

-
=%
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TakingtheLaplacelnverseTransformofbothsidesweget,

== L= (s))=1(f) = f-'ii_gmieej}

i(t)=L"% %}(DividingthenumeratoranddenominatorbyL)
putting® = &/Lweget

N Ty S C I S
EF"NJ:_L {-(: .:_!.-..ql'."l .n.}

i()=L74

i(t)=L"~( a_@ -- 5:,;: — },:—?r_} (againputtingbackthevalueoft }

IR X SN Sy e =
i(0)=H{2G - g ) = 0o T)=L(1-6T) (wherel, = 5)
i()=to(1-¢7)  (wherer = Timeconstant =) ..o LT1.4

[t canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechnique issameas that
obtained by standard differential method .

DCRESPONSEOFANR-CCIRCUIT(L.T.Method)
Similarly,

Let usdeterminethesolutioniofthefirst orderdifferential equationgivenbyequationAwhich is for
the DC response of a R-C Circuit under the zero initial condition i.e. voltage across capacitor is
zero, V-=0att=U"and hence V-=0at t=0"in thecircuit in figure A bytheproperty

ofcapacitancenot allowingthevoltageacrossittochangeasswitchisclosedatt=0.

- s
o ' My

v
p— - C
i)
FigurelLT1.2
VERIHF= ] L ettt essees s e sss e sessasesaes LT1.5
TakingtheLaplaceTransformofbothsidesweget,
1 Lel
-=RI(s) +_L_T+I (0 LT1.6
= l::R I(s) +1[§] (I(0)=0 :zeroinitialcharge)

-

I(SR+—=]=IE[  ==]

1]
val
1l
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==1(s)="]

(FCsRl ,'] ~acse1)

TakingtheLaplacelnverseTransformofbothsidesweget,

== F(s))=tle) = L]

KL
i(t)= mif Tf:iT](DividingthenumeratoranddenominatorbyRC)

putting - _ 1 weget
18

. - iR .‘;9_.‘-‘:

i(t) =L 5=t

i(t)= %&'ﬁé(puttingbackthevalueof'?: )

i()=loeRE(wherely 8 D)oo LT1.8
i(v=, e;j ( wherer = 1'ime constant =RC)
o B

It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechniquein gis same
as that obtained by standard differential method in d.

DCRESPONSEOFANR-L-CCIRCUIT(L.T.Method

w4 . T°

FigureLT1.3
Similarly,

Let us determinethesolution iofthefirst orderdifferential equationgiven byequationA which
isfortheDCresponseofa R-L-CCircuit underthezeroinitial condition i.e.theswitchsisclosed at
t=0.at t=0-,i.e. just before closing the switch s, the current in the inductor is zero. Since the
inductor does not allow sudden changes in currents, at t=o+ just after the switch is closed,the
current remains zero.alsothevoltageacrosscapacitor iszeroi.e. Vz=0att=0"andhence V:=0
att=07inthecircuitinfigurebythepropertyofcapacitancenot allowingthevoltageacross it ¥:to
suddenly change as switch is closed at t=0.

TakingtheLaplaceTransformofbothsidesweget,
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“=RI(s) ++ L [ SI(5) 1(0) 5T (0) T o LT1.10
= %=R I(s) + L[z {11 - %[’T}] (140} = @:zero imitial current &1(0)=0:zeroinitial
charge )

L EResal

=r ;: I(S)[R +L5+&] =I(S)[ = ]

. _¥ s _ Fi
it O B by B r—rer S

TakingtheLaplacelnverseTransformofbothsidesweget,

o - e
=z ()=t} = E M)

(DividingthenumeratoranddenominatorbyL(C)

: 5 ;
o0 == = |—
putting L X EI:weget
,‘,
! =1 T
i(t) =L {—'-—:Es__:mfnuq

Thedenominatorpolynomialbecomes=[#* --2 @5 -I- =]

=Imgiene—gort = a
where, 5 , 8y = —= 0~ YK - @i-—x 1

‘1
= f: = | = e} El
where, ;= R EI:andﬁ_ Tyl
BypartialFractionexpansion,ofI(s),

I8)=3 s,

A=(E — & Jishls= &

'y
e e
T
B=i& — 5-"_}1:;5; ls=51
¥ ¥
L L

(Bp=Bed  (Bo—BoP

.
T 1 - 1l -
I(S)_':Ei'ﬁg_."['\.f'f-'_.' ;E'E!-J

TakingthelnverseLaplaceTransform
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i(t)=Ag 54 g T
WhereAjand Azareconstantstobedeterminedandssandszaren theroots ofthe equation

Nowdepending uponthevaluesofsiandss;wehavethreecasesoftheresponse. CASE I :

When the roots are Real and Unequal, it gives an over-damped response.

- [+ 1
% - .':17 or™ * ““Inthiscase,thesolutionisgivenby i(t) =
e T A E T A TER) e LT 1.12
or i(t)=Ay %ty Agettt fort=0

CASEIl:WhentherootsareRealandEqual,itgivesanCritically-dampedresponse.

%: «‘-% or “ = yInthiscase,thesolutionisgivenby or
i(t)="" (q+410) FOLEET0........corerrcerirreeesnsrese e e e LT1.13

CASEIIl:WhentherootsareComplexConjugate,itgivesanunder-dampedresponse.
i or® < wiInthiscase,thesolutionisgivenby i(t) =
Ay geF 4 Agetit fort .. 0

I e e - ——rip B

where,5; 57 =

o [} T  mrd " . . u
Letvem=—a®  =y/=] ¢/ =g =jwgwhere j=% —Tandwa=1'* —x*

Hence, i(f)=o=tts, ef Ve A, pTIVEY

1. o [edidl &g =tugt - o [l df ag=lidgl |’
i(t) =¢~"F| (4 +-‘31:}E%}+ K — Ay %%H

i85+ Acicoswigt 168y — A einosgt )

HMHHHHHJHHHJHHHHJlJlMIJIHlI""H)HI""JllllJIJH)HIX)Q(XXXXXXXXXXXXXXIHHHHHHHJlJllIlJHHHHJHHHHHHIH
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TWOPORTNETWORKS

Generally, any network may be represented schematically by a rectangular box. A network may be
used for representing either Source orLoad, or for a variety of purposes. A pair of terminals at
whichasignalmayenterorleaveanetworkiscalledaport.Aportisdefinedasanypairof terminals into which
energy is withdrawn ,or where the network variables may be measured .One such network having
only one pair of terminals (1-1')is shown figure 1.1.

Neatwork
1! .
! h

+
port 1 £

———t s’ bel — w2

g il

Figurel.l

A two-port network is simply a network a network inside a black box, and the network has only two
pairsofaccessibleterminals;usuallyoneonepairsrepresentstheinputand theotherrepresentsthe
output. Such a building block is very common in electronic systems, communication system,
transmission and distribution system. fig 1.1 shows a two-port network,or two terminal pair
network,in which the four terminals have been paired into ports 1-1’ and 2-2’.The terminals 1-1’
togetherconstituteaport.Similarly,theterminals2-2’constituteanother port.Twoportscontaining
nosources in their branches are calledpassive ports ; among them are power transmissionlines and
transformers. Two ports containing source in their branches are called active ports. A voltage and
currentassigned to each of the two ports. The voltageand current at the input terminals are Fiand
I; where asVzand/:are entering into the network are V1, V'2,and/1, {2. Two of these are dependent
variable, the other two are indepent variable. The number of possible combinations
generatedbyfourvariable,takentwoattime,issix.Thus,therearesixpossiblesetsofequations describing
a two-port network.

OPENCIRCUITIMPEDANCE(Z)PARAMETERS

Agenerallineartwo-portnetworkisshownbelowinfigurel.2.

Thezparametersofa two-portnetworkfor thepositivedirectionofvoltagesandcurrents maybe
definedbyexpressingtheportvoltagestiiandlaintermsofthecurrents  fiandfz.Hereliand Viaretwo
dependentvariables and /1and{zare two independent variables.
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1 "rl Iz
+o—> | ag be| 1'2
port 11 = £ ﬁf“
. _ 1' . _.HJ'. b.r. 1 :21
Figurel.2

Thevoltageatport1-1’istheresponseproducedbythetwocurrents l1and Iz. thus

V1 = E90 0 T 0007 1.1

&y 022y @nd Zzzarethenetworkfunctions,andarecalledimpedance(Z)parameters,andare
defined by equationsl.1 and 1.2 .

Theseparametersalsocanberepresentedby Matrices. We

may write the matrix equation [V] = [Z][I]

v
whereVisthecoIumnmatrix:[vi] Zisa

. a1l &4z
squarematrlx:[;ﬂi =1

' r
andwemaywritel’ |inthecolumnmatrix::[ ‘_;;] Thus,[

k5 Ziq Zyoa k
vl ry iy

TheindividualZparametersforagivennetworkcanbedefinedbysettingeachofthe portcurrents equal
tozero. suppose port2-2’ is left open circuited, then {==0.

Thusﬁi1=% £ = Uwhere

Zyq 1zthe driving point Impedance at port 1 — 1 with port 2 —
simsipsyrircultect. [t iz called the open clreult input Iimpedance,
Z:-I:r'-:i- =10

i
where

Zpq 1z thetransfer impedanceat portl — 1'withport 2 -
Z'open clroulted. [t iz called the open clreult forward transfer Impedance
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Supposeport1-1’isleftopencircuited,thenl;=0.
Thus, z‘]:=:% =4

where

aqg lzthe transler lmpedanceatport £ — 2° withport 1 -
1'open clreuited. It {2 called the open clrouit reverse transfar Impedance

similarly,
g B[ p =
3= 3 =0

where

Zo7 1z the open clroultdriving point Impedanceat port 2 — 25with port 1 —

1’ open clrouited. It iz also called the open clrouit output Inpedance
.Theequivalentcircuitofthetwo-portnetworksgovernedbytheequations 1.1and 1.2,i.e.open circuit
impedance parameters as shown below in fig 1.3.

_'-’1 - ’2 N
1 2"‘
T 21t Zy T
V1 ;
| Zuty W ]
1 z
Ex 15 2
Figurel.3

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple éz = ¢

= = Hyp=U
i &

or

2y = dyy

It is observed that all the parameters have the dimensions of impedance. Moreover, individual
parametersarespecifiedonlywhenthecurrentinone ofthe portsiszero. Thiscorresponds toone of the
ports being open circuited from which the Z parameters also derive the name open circuit
impedance parameters.

Problem1.1

Prepared By Er. Sushree Sangeeta Panda



118

FindtheZparametersforthe circuitshowninFigurel.4

Yo

o

o

" .

L ° N

e " . .

T e g L T . -

Mg e -

. LI -

- }\‘._‘}" v

I
CEE O aay oy

LI TN v e e

ERE ) v’”fu:o-: .

A ) ol ::-:. [

Beowoy w o . LR Y

RO, . . LR ..

- L T S
Prvry L

e .

é;.-..<< LS .

i . R
Thaw L, L
ERrE. Frow s oy

Figurel.4

SolutionThecircuitintheproblemisaTnetwork.FromEgs16.1and16.2wehave

- andVz = Zg3ly +Zg:00

Wy =G -zl

When port b-b’ is open circuited,
V4

Tyq=
=14 1,

>
o
=
)
I
[}

l-": = f'l f:;, " EE'L = Z,-,

whereV, = [(Z; + Z)

Zy= é:zar'*' L)

where ¥ = l;Zlzandii; =Z;

ItcanbeobservedthatZ42 = Z21, sothenetworkisabilateral networkwhichsatisfiesthe principle of

reciprocity.

SHORT-CIRCUITADMITTANCE(Y)PARAMETERS
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— B,
1 +
Linssar
Vi network Vi
Vo= = o
Figure 1.5

Ageneraltwo-portnetworkwhichisconsideredinSection16.2isshown inFigl6.5TheY

parameters of a two- port for the positive directions of voltages and currents may be defined by
expressingtheportcurrentsfyandfzintermsofthevoltages Fiandl:. Herel, Vzaredependent variables
andliandV:are independentvariables. {1may be considered tobe the superpositionof two

components, one caused byliand the other byl.

Thus,

=0 S v W OO ;. | 1.3
Similarly, 1z = TaaVit TazWa st et 1.4

Yy, f120 ¥21andY:zarethenetworknetworkfunctionsandarealsocalledtheadmittance

(Y)parameters.TheyaredefinedbyEqgs16.3and16.4. Theseparameterscanberepresented by matrices
as follows

[1=[YIIV]
i F - ]
wherel=[ IE];Y:[»}:':' :;.—E:]andV: [{,&] Thus,

LYy Y
Iy Yl

TheindividualYparametersforagivennetworkcanbedefinedbysettingeachportvoltagetozero.
IfweletVzbezerobyshortcircuitingport2-2’then

Y=g V=0

igisthedrivingpointadmittanceatport1-1’, withport 2-2" short circuited.ltisalsocalledthe
shortcircuitinputadmittance.

.,
Toi= _H=—5|1.-'_=0

Tayisthetransferadmittanceatport1-1’, withport 2-2 shortcircuited.ltisalsocalledtheshort
circuitedforwardtransferadmittance.lfweletVibezerobyshortcircuitingport1-1’,then
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- I
'&.l:z =1y =0
Fo

Tizis the transfer admittance atport2-2’, withport1-1’shortcircuited. Itis alsocalledthe short

circuitedreversetransferadmittance.
-
1::=.ﬁ=: ¥1=0

Tazistheshortcircuitdriving pointadmittanceat port 2-2’, withport1-1’ short circuited. Itisalso
calledtheshortcircuited outputadmittance.Theequivalentcircuitofthenetworkgovernedby equation

1.3 & 1.4 is shown in figure 1.6.

— * - Iz

1 2

f
.}, Wy Gl

Figure 1.6

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple ¥1 = ¥

or
Fp=Y

It is observed that all the parameters have the dimensions of admittance. Moreover, individual
parametersarespecifiedonlywhenthe voltageinoneofthe portsiszero. Thiscorresponds toone of the
ports being short circuited from which the Y parameters also derive the name short circuit

admittance parameters.

Problem1.2FindtheY-parametersforthenetworkshowninFig.1.7

a ANV A"AA" b

V1 20 4 0 Vz

——t—
P —
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Figl.7

Solution:
. L
1.11-1:; ¥o=0

Whenb-ia'isshortcircuited, Vz=0andthenetworklooksasshowninFig.1.8(a)

a AVAYAY AVAVAY
h 10 I2 o
T 20
Vi — Zgg 20 Vo=0
a b
Fig.1.8(a)
Vi=hZeg
zeq= 21
. - I
&1_-1:1—?",5- :O:'\_’__,:%
1‘:1=%| =0
. . . - .
Whenb-:n'lsshortcwcwted,-1:=I] = - ~

ol |
so, -la=—

- Tz 1
and¥z =5 ¥a=0=-,

[’
-

similarly,whenporta-a'isshortcircuited, V==0andthenetworklooksasshowninFig. 1.8(b)
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“_‘-“ .- ."2
a AVAVAY AVAVAY 7 b
1Q 20 T
vy R0 gzn 4Q Vo — z4
a l

. Iz
Ton= =—| 37y =
el ! 0

Vi=lz& qwhereZ gjistheequivalentimpedanceasviewedfromb-b’. Z

En
B
Vo=l “g
=
. L a
T:E:E W 1:0:_E

tp= E[v=0

witha-a'isshortcircuited,-11=_ I-Since ,

Transmission(ABCD)parameters

2=
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Figurel.9

Transmission parameters or ABCD parameters are widely used in transmission line theory and
cascadednetworks.Indescribingthetransmissionparameters,theinputvariablestiand/yatport 1-1’,
usually calledthesending end areexpressed intermsof the output variables V3and:zat port 2-2/,
called, the receiving end.The transmission parameters provide a direct relationship between input
and output.Transmissionpatameters are also called general circuit parameters, or chain
nparameters. They are defined by

R e T R ORI I 1.5

DI ST EE R O (O Y A 1.6

Thenegativesignisusedwith.z,andnotfortheparameterBandD.Boththeportcurrents {1and- {;are
directed to the right, i.e. with a negative sign in equation a and b the currents at port 2-2’ which
leaves the port is designated as positive.The parameters A,B,C and d are called Transmission
parameters. In the matrix form, equation a and b are expressed as,

W & Dy Vs

e gl
. & B . :
Thematrix [C D]lscalledTransmlsswn Matrix.

Foragivennetwork,theseparameterscanbedeterminedasfollows.Withport2-2’opencircuited
i.e.lz=0;applyingavoltage Yiattheport1-1’,usingequa,wehave

A=ZlI = landc =4

e
¥e Ve

f:z.ﬂ

Ve

hence,::r Iy = U=ga1l {z=0

1 ¥y .
1/Aiscalledtheopencircuitvoltagegainadimensionlessparameter.And =E"' ;T:= 0=Z | .
i

=0is called open circuit transfer impedance. with port 2-2’ short circuited, i.e. ¥z =0,applying

voltageViat port 1-1’ from equn . b we have

- 1
B= = 19 =0 and-D= =|p; =10
Iz Ilg
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1 I -
R T: = Tz o = 0 =Ya4/ £, =0Oiscalledshortcircuittransferadmittance
' b
and,
1 —_ IE . . . . . .
- ~a I_ = (I =0y [, =Oiscalledshortcircuitcurrentgainadimensionlessparameter.
L
Problem1.3

FindthetransmissionorgeneralcircuitparametersforthecircuitshowninFig.1.10

L s
2 AN AAYAY, b
! T
Vi 50 Vo
| 3
a
Fig.1.10

Solution:FromEquations1.5and1.6,wehave
1."‘-1 = &l—"': - ﬁ}t:
I-_ - EV: = D]:

whenb-b’isopencircuitedi.e.l2=0,wehave A =

whereVi=5 liand V=5 I1andhence,A=§ andC =
2 =071
whenb-b’isshortcircuitedi.e.V>=0,wehave B = -

".Ef_
—

vz = JandD =—:—;' =1

i it -la= 3 = 7
Inthecircuit,-1z ii'ﬂll_,l andso,B 1_.1
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simiIarIy,lizl%_ Viand-l2= 1: Viand

hence D =

Hybridparameters

Hybridparametersorh-parametersfindextensiveuseintransistorcircuits.Theyarewell suitedto
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices
describeatwo-portnetwork,whenthevoltageofone portand thecurrentof otherportare taken as the
independent variables. Consider the network in figure 1.11.

Ifthevoltageatportl-1’andcurrentatport2-2’are takenasdependentvariables,wecan
expressthemintermsofliand Vz.

W=y B Ve et 1

1: = j‘l:-lf-]_ ol f-::‘-"‘: .......................................................... 1.8

T

!
Thecoefficientintheabovetermsarecalledhybridparameters.Inmatrixnotation [IE] =

gy h::][?:]

—— lag be1——22

+
port 1 V2
S | e poll T o

ig =2

Figurel.11
fromequationaandbtheindividualhparametersmaybedefinedbylettingls = WandV2=0. when V2=

0,theport 2-2’ is short circuited.

Thentyi= %‘| 1"=0=shortcircuitinputimpedance. 1=

| ¥z=0 = short circuit forward current gain Similarly,

[l Rl
Tl

by letting port 1-1’ open,l, =U

Wy

= .

I3 =0=opencircuitreversevoltagegain
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! . . .
Baz= H—‘ I3 =0=opencircuitedoutputadmittance
H
Since h-parameters represent dimensionally an impedance, an admittance,a voltage gain and a

currentgain,theyarecalledhybridparameters.Anequivalentcircuitofatwo-portnetworkin terms of
hybrid parameters is shown below.

—h - Iz
11 .. 1T <4>h2.1 H' L t}z

Figurel.12

Problem1.4

Findtheh-parameters ofthenetworkshowninFig1.13.

a AAN AVAVAVS _
T G s 20 T

Fig.1.13
Solution :

Fromequations1.7and1.8, wehave

Vel | v,
M= 77| V=0;821= | ¥=0; hl:=;_

I
s mp Hgo=—=
s=ip ag=3

b

f]_:O

Ifportb-tisshortcircuited, ¥z=0andthenetworklooksasshowninFig.1.14(a)
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a AN AN E b
T - h 10 20
—_ V ; 20 §4 Q V2=0
i
a b
Fig.1.14(a)

B N P
h‘_l— 3:.5 [ —O, l--l —_— I-L-l Zm
Z., istheequivalentimpedanceasviewedfromporta-‘is2Q

so,Vi=112V By

=]—:'=2()

[ 1, 1
2= ,—:! I'-=Owhent:=0;-lz=—andhencellz1=-~

Ifporta-a ‘isopencircuited,i=0andthenetworklooksasshowninFig.1.14(b)then

AN ——T=—MW
—> =0
T 14 20

V4 g 28

Fig.1.14(b)
1, s
]']:g: ::: :1=Qand 1'."1: 1_'. 2; ]_-\:?‘ql,r::
JA4, JA: 1.
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. I %
hi:= E -‘.I.=G=':',mdk::= T I'.|= = _.

INTERRELATIONSHIPSOFDIFFERENTPARAMETERS

ExpressionofzparametersintermsofYparametersandvice-versa

From equations 1.1,1.2,1.3 &1.4 , it is easy to derive the relation between the open circuit
impedanceparametersandtheshortcircuitadmittanceparametersby = meansoftwo  matrix
equationsof the respective parameters. By solving equation a and b for l1and!z, we get

W a2 - -
I= [1;33 z}:]/fl"z }andIF[zE: 1;1 ]/":"z

where A. isthe determinant of Z matrix

a - 211 21:]
- dpy dpo
L- . a0 e B 1.9
a7 a7
12:_5:‘_1.;1_‘_‘:&’_1,.;2 ........................................................................ 1.10
dz 7

comparingequations1.9and1.10withequationsl.3and1.4wehave

!1_& ZEZ = “7-1.2
GED— b
.32 : Z
O
T
2 ‘5‘2

Inasimilarmanner,thezparametersmaybeexpressedintermsofthe admittanceparametersby solving
equationsl1.3and 1.4 for Viand¥:

b Eg g
Vsl ¢ Ay ;a“d\?f[‘f: L2

where 4. isthe determinant of Y matrix

T2 Tz
By= [‘1’:. ‘1'_::]
1“'*1.=-:L;£L1.-l:'i'l: ........................................................................... 1.11 "f:=—'i&

il + v

e
O 1.12

b

comparingequationsl.1landl.12withequationsl.1and1.2wehave
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GeneralCircuitParametersor ABCD Parameters inTermsofZparametersand Y_

Parameters
Weknow that
Wy = Al — Bl by = Zqqdy — Zqzig; ly =Ty ¥y + Tag¥g
L =CVo— DV =801y + Epl; : [z = Yau ¥y + ¥oo¥a
g =kl =y ; B=dv, mOp=[1 =10
e B Iz sl -

Substitutingtheconditionlz=0inequationsl.1and1.2weget A = L
rE
[ == sy

18

Substitutingtheconditionl;=0inequations1.4weget,

f = U=

Yoo

Substitutingtheconditionlz=0inequations1.2weget C =

iy _a L
k=gt

Substitutingthecondition Iz=0inequation1.3and1.4andsolvingfor Vgives—1 l:.FI':‘Where-i'-;is
the determinant of the admittance matrix

ls

IF: = ':I :-—il‘::c
L

%
Substitutingthecondition¥z=0inequations1.4,weget
=

Z..
Substitutingthecondition V==0inequation1.1and1.2andsolvingfor I-gives=V; fWhereﬁzis

T

V=0 -"— -8

- .

the determinant of theimpedance matrix
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-1
— = v, =
I -

T andrepresentation

A two-port network with any number of elementsmay be converted into a two-port three-
element network. Thus, a two-port network may be represented by an equivalent T-
network,i.e.threeimpedances areconnectedtogetherintheformofa Tasshowninfigure 1.15.

1 }—- %2

== & o e I3
Vi Z; Vs
1" - —
Figurel.15

ItispossibletoexpresstheelementsoftheT-networkintermofZ parameters,orABCD
parametersasexplainedbelow.

Zparametersofthe network

2’1.1:'7'-.‘ [::O =E,:--2;

A
bt

L
e I..."'
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ZT= IITE" [1 =0
21== "T: 11_ =0

Fromtheaboverelations,itisclearthat

Ly =291 2y
Ly = dng- dyy
Z, =dyy8y

ABCDparametersofthe network

%, Ea '|'3|;
A= "l?; I:=0 = E:
B=""alV =0

When2-2'isshortcircuited

k. Fale
© EpEotEBaiZytE.)

B =Ezr: T Ebj+z_i£h
-t

When2-2'isshortcircuited

—l=].—2E_
=iz

_Lpti,
==

Fromtheaboverelationswecanobtain Z

=g *
IL' s 7 c T

Problem:1.6

=&

b

-
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TheZparametersofaTwo-portnetworkaredyq = 101 2., = 1B0, L =&, =5Q.
FindtheequivalentTnetworkandABCDParameters.

Solution :

TheequivalentTnetworkisshowninFigurel.16 wherei

=&4q- Aq= 50

Zy=E837-d12= 100

andZ =50

TheABCDparametersofthenetworkare A =

24122 B =(Z, * £,)+55=250

C=1=0.02;D =1+ ;=3

In a similar way a two-port network may be represented by an equivalent - network, i.e.
three impedances or admittances are connected together in the form of:as shown in Fig
1.17.
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Fig.1.17

Itispossibletoexpresstheelementsofthem-networkintermsofYparametersor ABCD

parametersasexplainedbelow.

Y-parametersofthenetwork

TR [ S %

Y._-wl = i 'I.,-': :0 :—‘:I.'-:

Yoy =2 =0 =Y3+ ¥,

s

e = —=| 3, =0 =Y
15 ".IEI 1

Fromtheaboverelations,itisclearthat Yi=

Yoo+ T
V=Yg

Ya=¥aat+ ¥y

WritingABCDparametersintermsofYparametersyieldsthefollowingresults.

=lgy lpTig
A= — e
Tee T
—al
B_‘*':'._T:
B o g i
C= {—111+‘13+ : =
1 it
=W Yty
- Tma ‘.I.';

fromtheaboveresults,weobtain

D=1,
le Tl‘:fa

1 ..
T -= E" 1:[ 3:

B
=N W
[
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CLASSIFICATIONOFFILTERS

Afilterisareactivenetworkthatfreely passesthedesiredbandoffrequencieswhilealmost totally
suppressing all other bands. A filter is constructed from purely reactive elements, for otherwise the
attenuation would never becomeszero i n the pass band of thefilter network.

Filters differ from simple resonant circuit in providing a substantially constant transmission
over the band which they accept; this band may lie between any limits depending on the
design. Ideally, filters should produce no attenuation in the desired band, called the
transmissionbandorpassband,andshould providetotal orinfiniteattenuationatallother
frequencies, called attenuation band or stop band. The frequency which separates the
transmissionbandandtheattenuationbandisdefinedasthecut-offfrequency ofthewave filters,
and is designated by fc

Filter networks are widely used in communication systems to separate various voice
channels in carrier frequency telephone circuits. Filters also find applications in instrumentation,
telemetering equipment etc. where it is necessary to transmit or attenuate a limited range of
frequencies. A filter may, in principle, have any number of pass bands separated by attenuation
bands.However,theyareclassifiedintofourcommontypes,viz.lowpass,highpass,bandpassand band
elimination.

Decibelandneper

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the
naturallogarithmoftheratioof inputvoltage(or current)to the outputvoltage(orcurrent),provide that
the network is properly terminated in its characteristic impedance Z.

/4 f2

-

Vi Two Port Vs

Fig.9.1(a)

From fig. 9.1 (a) the number of nepers, N=log e [V1/V,]or loge [l1/1,]. A neper can also be
expressed in terms of input power,P;and the output power P,as N=1/2 log.P1/P>. A decibel is
definedastentimesthecommonlogarithmsoftheratiooftheinputpowertotheoutputpower.

DecibelD=10log:oP1/P
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Thedecibelcanbeexpressedintermsof theratioof inputvoltage(orcurrent) andthe output
voltage (or current.)

D=20log10[V1/V2]=20log1o[l1/15]

*Onedecibelisequalto0.115 N.
LowPassFilter

Bydefinitionalowpass(LP)filterisonewhichpasseswithoutattenuationallfrequencies up to the
cut-off frequency f, and attenuates all otherfrequenciesgreaterthanf. The attenuation
characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all frequencies
from zero up to the cut-off frequency. The band is called pass band or transmission band.Thus,the
pass bandfortheLP filter is thefrequencyrangeO to f..Thefrequencyrange
overwhichtransmissiondoesnottakeplaceiscalledthestopband orattenuationband. Thestop band
for a LP filter is the frequency range above f..

o ng_’; Attenuation o | Attenuation| p_oo
Band Band Band
£ —f fe —Ff
Low Pass Filter High Pass Filter
o | Attenuation| pags Attenuation o |Pass | Attenuation | Pass
Band Band Band Band | Band Band
i fo —fF fq T f
- 2
oy i e . Band Elimination Filter
Fig.9.1(b)
HighPassFilter

A high pass (HP) filter attenuates all frequencies belowa designated cut-off frequency, f., and
passesallfrequenciesabovef..Thusthepassbandof thisfilteristhefrequencyrangeabove f.,and thestop
bandisthefrequencyrangebelow f.. Theattenuationcharacteristicof aHP filterisshown in fig.9.1 (b).

BandPassFilter
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A band pass filter passes frequencies between two designated cut-off frequencies and
attenuatesallotherfrequencies.ltisabbreviatedasBPfilter.Asshowninfig.9.1(b),aBPfilterhas
twocut-offfrequenciesandwillhavethepassband fo—f;;fiiscalledthelowercut—off frequency, while fiis
called the upper cut-off frequency.

BandEliminationfilter

Abandeliminationfilterpassesallfrequencieslyingoutsideacertain range,whileitattenuates all
frequencies between the two designated frequencies. It is also referred as band stop filter. The
characteristic of an ideal band elimination filter is shown in fig.9.1 (b).All frequencies between
firandfowill be attenuatedwhilefrequencies below f;andabovefwill be passed.

FILTERNETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can only be

satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters
aredesignedwithanassumptionthattheelementsof thefiltersarepurelyreactive.Filtersaremade of
symmetrical T, or msection. Tand it section can be considered as combination of unsymmetrical L
sections as shown in Fig.9.2.

—] T — e e
[ ]2z L] 2z []2
(a) (b)
“%L _.‘?_2]_ Z4
31— TEE T coni TF e
[_] 275 L‘_J 225 J 275 l_L/I 27>
= —— - i 3 - - = 45 N i N e e L)
Fig. 9.2

The ladder structure is one of the commonest forms of filter network. A cascade
connection ofseveralTand msections constitutesaladdernetwork.Acommonformofthe ladder
network is shown in Fig.9.3.

Figure9.3(a)representsaTsectionladdernetwork,whereasFig.9.3(b)representsthemn section
laddernetwork.ltcanbeobservedthatbothnetworksareidenticalexceptattheends.
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] 2 Z2 Zo [ 2o
(a)

ax

(b)

Fig. 9.3

EQUATIONSOFFILTERNETWORKS

ThestudyofthebehaviorofanyfilterrequiresthecalculationofitspropagationconstantV,
attenuationa,phaseshiftp anditscharacteristicimpedanceZ.

T-Network

ConsiderasymmetricalT-networkasshowninFig. 9.4.

A o
1 2 2 2
——AAA AAAN——
22 20
1:- -

Fig.9.4

If the image impedances at port 1-1' and port 2-2' are equal to each other ,the image

impedanceisthencalledthecharacteristic,ortheiterativeimpedance,Z,.Thus,ifthenetworkin Fig.9.4is
terminated inZ o its inputimpedance will alsobe Z o. The value of input impedance for the T-network

when it is terminated inZyis given by

137
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Z'l 7
Z, 22[2 +£“J

Zin -~ — —2 --+_ Z] i ‘__
> +Z, +2Z,
RISO Zin -y ZO
Z
. 221[ L4-Z ]
Z “~ =)

2 Zy+22Z, +22Z,

| ZP422,Z, +22,Zy+22,Z, +4ZyZ,

Zg
A2 +2Z5 -1 225)

4Z5 = Z{ +42,2,

ThecharacteristicimpedanceofasymmetricalT-sectionis

[22 e

(9.1)

Zorcanalsobeexpressedintermsofopen circuitimpedanceZocandshortcircuitimpedance Z sc of
the T— network . From Fig. 9.4, the open circuit impedance Z oc= Z1/2 + Z ;and

Z

= Z

S cl@ontg ¥ #3
sC Z

= 2—'+Z;_

2
S _ 2t +4zZ,
b PN 7 T
-2

Lo X == L T A =
O¢ s | Rl 4

2 p
=Zoy OF Zop = \[ZLgcZLye

(9.2)
PropagationConstantofT-Network

BydefinitationthepropagationconstantYofthenetworkinFig.9.5isgivenbyY=logeli/I>
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Writingthemeshequationforthe2ndmesh,we get

£ L1
2 2
1 AN N e B
/”_\ /"\

17 2t
Fig.9.5
Z

Zl

SEET SR
ST & & s Y
12 ZZ

Zl

?4’22 “i‘Zg :22€T
Z
ZO :Zz(ey—l)_"'_‘

2 (9.3)
ThecharacteristicimpedanceofaT-networkisgivenby
7 2
Zir = S
I 1 2
=
(9.4)

SquaringEsg.9.3and9.4andsubtractingEq.9.4fromEqg.9.3,weget
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Z3 (" -1 + 2L =22, (" Syl

ZiE" 1) —-Z,Z,(1+e"—1D=0
Z3(e—1)?—2,Z,eY =0
Z,(e" =1 —Ze"=0

(e¥ —1)* = _Z_lfi
Z,
eV 4 1—2eY = Z)
L€,

Rearrangingtheaboveequation,wehave

e V(e®! +1—2e7) = L1
<>

(e e Ty LA

=

Dividingbothsidesby2,we have

e’ +e Y Zs
2 27,
Z,

cosh y = I+2Z
2

(9.5)

Stillanotherexpressionmayobtainedforthecomplexpropagationconstantintermsof
thehyperbolic tangent rather than hyperbolic cosine.

_"'Z]ZZ —_— 0
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sinhy=—,1Z2Z, el o SO
2 )
(9.6)
DividingEq.9.6byEq.9.5,Weget
b
tanh vy = UTZ
Zs+—-
< 2
Z
P
But Zy+ 'E" =Zy,
AlsofromEq. 9.2,
ZDT - ‘\J‘zi}(-zs‘('
e
tanh vy = —Z::

; e
Also sinh % = ,,E(coshy — 1)

Where coshvy —=1-+(Z,/2Z;)

_al a
 Alaz

n— Network

Considerasymmetricaln—sectionshowninFig.9.6.WhenthenetworkisterminatedinZoatport2
—2"itsinputimpedanceisgivenby

I /

225

Fig.9.6
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2Z.i %o l
2Z,\Z, =2
5, 2“ 2Z, + Z |

in 7 I Zn T
<04 27
Z‘+222+zn &

By definition of characteristic
impedance, Z;, = %,

27+ Lo
22, lzl 2 20\

Z‘O -
2,7, o
Dz A Z

¥ AR i

: 2Z,(2Z,Z, + ZoZy +22Zy25)
2222[) +2zozz g 2( 1 2. ﬁzl )
2Z, + 2, (2Z; + 4o
2
2Z3Z,Z, + Z\Z5 + 2232, + AZ2Zy+2Z,Z

— 42,22 4+ 2202, Z, +4ZyZ;

ZyZy +

' 2,23 ¥ 42,22 =422}
Z2(Z, +42,)=4Z\Z3
g2 _ A4z
LA AT

Rearranging the above equation leads to

B Z\Zy
N1+ 2, /42,

(9.8)

which is the characteristic impedance of a symmetrical mw-network,

22,

Zﬁ-rr . >
FromEq.9.1
=1 5
Zor. = J 41_ + Z,Z,
z()-lr S thz
Zor
(9.9)
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Zorcanbeexpressedintermsof theopen circuitimpedanceZ ocandshortcircuitimpedance Z scof
the it network shown in Fig.9.6 exclusive of the load Z .
FromFig.9.6,theinputimpedanceatportl—l'whenportz— 2'isopenisgiven by
,  _20(Z +2Z))
OG5, -
2, +47

Similarly,theinputimpedanceatport1-1 whenport2—2 isshortcircuitisgivenby

TR
oSG eI

Q225 oo ZiZs

Hence Z,.xZ., = — = -
: Z, +4Z, 14+ Z,/4Z,

ThusfromEq.9.8
Zﬂ' 1] o 2{} C Z_\'c >
(9.10)

PropagationConstantofm—Network

Thepropagationconstantofasymmetricaln—section isthesameasthatforasymmetricalT—
Section.

je. cosh y =1+ ——

2

CLASSIFICATION OFPASSBAND
AND STOP BAND

Itispossibletoverifythecharacteristicsoffiltersfrom thepropagationconstantofthe network.The

propagation constant Y, being a function of frequency, the pass band, stop band and the cut-off
point,i.e.thepointofseparationbetweenthe twobands,canbeidentified.ForsymmetricalTorm — section,
the expression for propagation constant ¥ in terms of the hyperbolic functions is given by Eqs 9.5
and 9.7 in section 9.3. From Eq.9.7, sin h ¥/2 =V(Z 1/4Z,) .

IfZ;andZ,arebothpureimaginaryvalues,theirratio,andhencez,/4Z,,willbeapurereal number.
SinceZ;and Zxmay be anywhere in the range from -j,to +jq, Z1/ 4Zamay also have any
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realvaluebetweentheinfinitelimits.ThensinhY/2=vZ 1/V4Z,willalsohaveinfinitelimits,but may be
either real or imaginary depending upon whether Z;/ 4Z,is positive or negative.

Weknowthat thepropagationconstant isacomplexfunctionyY =a+jB, the real partof the

complexpropagationconstanta,isameasureofthe changeinmagnitudeofthecurrentor voltage in the

network ,known as the attenuation constant . B is a measure of the difference in phase

betweentheinputandoutputcurrentsorvoltages.KnownasphaseshiftconstantThereforeaandp

takeondifferentvaluesdependingupontheofZ;/47,.FromEq.9.7, Wehave

JB B B

Y. DR () (1 LAty : a .
sinh — = sinh| — 4+ <= | = sinh —cos = 4 jcosh—sin—
) ) S SN,

Zl
47,

(9.11)
CaseA
IfZ;andZ,arethesametypeofreactances,then([Z,/4Z;]isrealandequaltosaya+x.

TheimaginarypartoftheEq.9.11mustbezero.

B

cosh L sin— =20
2 2

(9.12)
sinh L—!COSE =
2 2
(9.13)

aandPBmustsatisfyboththeabove equations.

Equation9.12canbesatisfiedifB/2=0ornm,wheren=0,1,2,.....,thencosB/2=1andsinha/2=x

=V(Z1/4Z5)

Thatxshouldbealwayspositiveimplies that

- - -

s 0anda=2sinh
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Sincea#0,itindicatesthattheattenuationexists.
CaseB

ConsiderthecaseofZiandZ;beingoppositetypeofreactances,i.e. Z:/4Z,isnegative, making vV Z1/
4Z,imaginary and equal to say Jx

*TherealpartoftheEq.9.11mustbezero.

sinh = coSs E =)
2 2

e

(9.15)

o .
cosh —sin E =%
2 2

(9.16)

Boththeequationsmustbesatisfiedsimultaneouslybyaandf.Equation 9.15 maybesatisfied when a =
0, or when B = it. These conditions are considered separately hereunder

(i) Whena=0;fromEq.9.15, sinha/2=0.andfromEq.9.16sinB/2= x=V(Z1/4Z,).Butthe
sinecanhave a maximum value of 1. Therefore, the above solutionis valid only for negativezZi/ 42,
,andhavingmaximumvalueofunity.Itindicatestheconditionofpassbandwithzeroattenuation and
follows the condition as

4
az,

: L
= 2'gin 12
i V.

(i) WhenB=m,fromEq.9.15,cosB/2=0.AndfromEq.9.16,sinf/2=+1;cosha/2=x=V(Z1/4Z,)

—1 ==

=0

(9.17)

Sincecosha/22 1,thissolutionisvalidfornegativeZ:/4Z,,andhavingmagnitude greater
than, or equal to unity. It indicates the condition of stop band since a # 0.

(9.18)

It can be observed that there are three limits for case A and B. Knowing the values of
Ziand Z,, it is possible to determine the case to be applied to the filter. Z;and Z;are made of
different types of reactances, or combinations of reactances, so that, as the frequency changes, a
filtermaypassfromonecasetoanother.CaseAand(ii)incaseBareattenuation bands,whereas(i) in case B
is the transmission band.
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Thefrequencywhichseparatestheattenuationbandfrompassbandorviceversais
called cut-off frequency. The cut-off frequency is denoted by fc, and is also termed as nominal
frequency.SinceZgisrealinthepassbandandimaginaryinanattenuationband, fcisthefrequency at which
Zochanges from being real to being imaginary. These frequencies occur at

2 :
—- = 0Qor Z, =0
4z, ’ 9.18(a)
A
42' =—1lorZ,+4Z, =0
2 9.18(b)

Theaboveconditionscanberepresentedgraphically,asinFig.9.7.

)

o (nepers)
Stop Pass Stop
Band Band Band

N-l

425

Fig. 9.7

CHARACTERISTIC IMPEDANCEIN
THE PASS AND STOP BANDS

Referringtothecharacteristicimpedanceofasymmetrical T-network,fromEqg.9.1We have

g 7
Zir=ud—+22, = |22, |1+ =1
07 4 542 |52 422

IfZ;andZ;arepurelyreactive,letZ;=jxiandZ;=jx,,then

Prepared By Er. Sushree Sangeeta Panda



147

Zor = |=%y |1 +——

(9.19)

Apassbandexistswhenxi;andx,areofoppositereactancesand

X

—— < 0
4x,

—1 <

Substituting these conditions in Eq. 9.19, we find that Zoris positive and real. Now consider
thestop band.Astopbandexistswhen x;andx.are of thesametypeofreactances; thenxi/4x,>0.
Substituting these conditions in Eq. 9.19, we find that Zoris purley imaginary in this attenuation
region.Another stopbandexists when x;andx are of the same type of reactances, butwithxi/4x,
<-1.ThenfromEq.9.19,Zqrisagainpurlyimaginaryintheattenuationregion.

Thus, in a pass band if a network is terminated in a pure resistance Ro(Zor= Ro), the input
impedanceisRoandthenetwork transmitsthepower receivedfromthesourcetotheRowithout any
attenuation. In a stop band Zoris reactive. Therefore, if the network is terminated in a pure
reactance ( Zo= pure reactance), the input impedance is reactive, and cannot receive or transmit
power. However, the network transmits voltage and current with 90° phase difference and with
attenuation.Ithasalreadybeenshownthatthecharacteristicsimpedanceofasymmetricalm-
sectioncanbeexpressedintermsofT.Thus,fromEq.9.9,Z¢x=21Z>/Zor.

SinceZ;andZ,arepurelyreactive,Zonisreal, ifZorisreal andZodsimaginaryifZoris imaginary. Thus
the conditions developed for T — section are valid for m — sections.

CONSTANT-KLOWPASSFILTER

Anetwork,eitherTorm,issaidtobe oftheconstant— ktypeifZiandZ,ofthenetworksatisfythe relation

Z1Zz= kz
(9.20)

Where Z;and Z,are impedances in the T and 1t sections as shown in Fig.9.8.Equation 9.20 states
that Z,and Z;are inverse if their product is a constant, independent of frequency. K is a real
constantthatistheresistance.kisoften termedasdesignimpedanceornominalimpedanceofthe
constant k —filter.
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Theconstantk, Tormttypefilterisalsoknownasthe prototypebecauseothermorecomplex network can be
derived from it. A prototype T and 1t — section are shown in

Zy Z
2 5 z;
VOO ——T——" B0 —e MwRmas s i s agn sum e T 1 1 P -
L/2 L/2 i
Z; T ¢ 2725 :||: cl/2 cl2 275
(2) (b)

Fig.9.8

Fig.9.8(a)and(b),where Z;=jwiandZ;=1/jwc. HenceZ1Z,=L/C=k*whichis independent of
frequency.

: [

Z]ZEZA’Z = — or k: E
5 "y

(9.21)

SincetheproductZ;andZ;isconstant,thefilterisaconstant—ktype.FromEq.9.18(a)the
cut-offfrequenciesareZ:/4Z,= 0,

E Yy
o —wfhe

4
i.e F =0 and —Ll-= 1

2
L L C o ;

# ~:

Or ‘f‘:. o l

v LC v

(9.22)

The pass band can be determined graphically. The reactances of Ziand 4Z,will vary with
frequencyasdrawninFig.9.9.Thecut-offfrequencyat theintersectionof thecurves Z;and-4zis indicated
as fc. On the X — axis as Z1= -4Z,at cut-off frequency, the pass band lies between the frequencies at
which Z1=0, and Z;= - 47,.
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Attenuation

Reactance £ sl

o>

Fig.9.9

Allthefrequenciesabovefclieinastoporattenuationband,thus,the networkiscalleda low-

passfilter.WealsohavefromEq.9.7that

e T ’—mZLC JovLC
sith— = |—== =
2 \4z, 4 2

FromEq.9.22
LG = _i
Jomm
2 2 e of 240K i
| e e A Rt
Y2 T 2. 2

We also know that in the pass band

5
— =)

2
_is(L) <o
J

or L«::]
T

and BzZsin"[f];cxzo
In the attenuation band,
Z o
= —1lie.~— <1
az, 7 if?f_ Z

f
S }—:Zcosh"'l[ﬂ‘i];ﬁ='ﬂ’
4z, i

o« — 2cosh ™!

TheplotsofaandBforpassandstopbandsareshowninFig.9.10

Prepared By Er. Sushree Sangeeta Panda



150

Thus,fromFig.9.10,a=0,B=2sinh™(f/fc)forf<fc

a=2cosh™(f/fc);B=rtforf>fc

o
o —+
-
— —
o
N-—-»-
! N+
O

fc

Fig.9.10

Thecharacteristicsimpedancecanbecalculatedasfollows

i z
- Jf-'lﬁz [1 —+ 42‘2 ]

—NE= ]

2
zor =i £)

(9.23)

From Eq.9.23, Zoris rael when f<fc, i.e.in the pass band at f = fc, Zor; and for f >fc, Zoris
imaginaryintheattenuationband,risingtoinfinitereactanceatinfinitefrequency.Thevariationof Zorwith
frequency is shown in Fig.9.11

|
4 |
I | it
K —
] —~
-~
ZO): ZOT i / -
T T ZoT l 2
Pl
Passband | / Attenuation
/
, |
0.5 1 ity —
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Fig.9.11
Similarly,thecharacteristicsimpedanceofan—networkisgivenby

| ydn . k

Zow = 2 ——
Lot 2
-3

(9.24)

The variation of Zoxwith frequency is shown in Fig.9.11 . For f <fc, Zoris real ; at f = fc, Zoris
infinite,andforf>fc,Zorisimaginary.Alowpassfiltercanbedesignedfromthespecificationsof cut-off
frequency and load resistance.

Atcut-offfrequency,Zi=- 42,
—4
Jw

w2 2LC = 1

Joy, L=

Also we know that & = L/ C is called the design impedance or the load resistance

Bl =
C
w2 kC? = 1
| . - :
C' = —— gives the value of the shunt capacitance
wf .k
_ ' . e
and L =k’C = —f gives the value of the series inductance.
™

o
Example9.1.

Designalowpassfilter(bothmandT—sections)havingacut-offfrequencyof2kHz
to operate with a terminated load resistance of 500 Q

.solution.Itisgiventhatk=V(L/C)=500 Q,andfc=2000Hz we
know that L = k/mfc= 500/3.14 x 2000 = 79.6 mH

C=1/nfck=1/3.14.2000.500=0.318uF
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TheTandn—sectionsofthisfilterareshowninFig.9.12(a)and(b)respectively.

L/2 =39.8 mMH L/2 =39.8 mH L =796 mH
——EH 0™ “BTOO0 “BOD0 ™
= L =
[=p] (=)
[V ] u
b C = 03189}1f —— ; s 1 g
1 1]
£ o3
o L&
(a) (b)
Fig.9.12
Constant K — high pass filter can be obtained by changing the positions of series and shunt arms of
thenetworksshowninFig.9.8.TheprototypehighpassfiltersareshowninFig.9.13,whereZ;=-j/wcandZ,=
jwl .
26 2:C ¢
L, | s I :
Z4 Z4 Zy
2 2
L 22 oL 2% 2L Q 22,
o ° . a
(a) (b)
Fig.9.13

Again,itcanbeobservedthattheproductofZiandZ,isindependentoffrequency,andthe filter design
obtained will be of the constantk type .Thus, Z:Z,are given by

— k?

R — Ji L
2.2, =— jol =—
142 wC'l C

Thecut-offfrequenciesaregivenbyZ;=0andZ,=-42,.

Z1=0Oindicatesj/wC=0,orw—>a
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FromZ,=-47,

o1

(9.25)

Reactance —-

-j/wC=-4jwL

w’LC=1/4

.. 1
.fp - =T
411\[L_C

ThereactancesofZ;andZ;aresketchedasfunctionsoffrequencyasshowninFig.9.14.

L2

—475
-— Passband —

Fig.9.14

AsseenfromFig.9.14,thefiltertransmitsallfrequenciesbetweenf=fcandf=a.Thepointfc

fromthegraphisapointatwhichZ,=-4Z,.From

Eq.9.7,

sinh b
2

FromEq.9.25,

153
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f"

— B0
i g 5

4oy’ I

Inthepassband, -1<Z1/4Z,<0,a=0ortheregioninwhichfc/f<lisapassbandB=2sin™(fc/f

)
IntheattenuationbandZ/47,<-1,i.e.fc/f>1

a=2cosh*[Z./42,]

=2cos (fc/f);B=-1

_...._f

Fig.9.15

TheplotsofaandBforpassandstopbandsofahighpassfilternetworkareshowninFig.9.15.

Ahighpassfiltermaybe designedsimilartothelowpassfilterbychoosingaresistiveload requalto

the constant k, such that R =k =vL/C
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fo =
4m~/L/ C
; k 1
fo=—=
4wl  4nwCk
Since o= £,
k
L= k and C = :
Tf,. 4tf k

Thecharacteristicimpedancecanbecalculatedusingtherelation

Zz L 1
Zor = a1 L=t |-= [1—7]
or 1 2[ 422] \/C TV S
s N2
Zor =k 1"[")(—(]
\ 7

Similarly,thecharacteristicimpedanceofan—networkisgivenby

ZDT': s 3 ZIZ:.’ pa.L kz
ZD O = Z S Z
T Pl SR Ao ML) P Y i ST or 0r
Zor 1
0 f, —f
(9.26)
Fig.9.16

TheplotofcharacteristicimpedanceswithrespecttofrequencyisshowninFig.9.16.

Example9.2.
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Designahighpassfilterhavingacut-offfrequencyoflkHzwithaloadresistance
of600Q).
Solution.  [tisgiventhatR,=K=600Qandfc=1000Hz L = K
/Anf=600 /4 x T x 1000 = 47.74 mH
C=1/4nkfc=1/4nx600x1000=0.133uF

TheTandn—sectionsofthefilterareshowninFig.9.17.

2C = 0.266 nF 2C = 0.266 puF C = 0.133 puF
o} ||———e o | - B
S E
L =47.74 mH 2L ) 27 B 95.48 mH
o
(& 3]
(a) (b)
Fig.9.17

m-DERIVEDT-SECTIONFILTER

ItisclearfromFigs.9.10and9.15thattheattenuation isnotsharpinthe stop bandfor k-typefilters. The

characteristic impedance, Zois a function of frequency and varies widely in the transmission band.
Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two or
more identical sections. In order to join the filter sections, it would be necessary that their
characteristic impedances be equal to each other at all frequencies. If their characteristic
impedances match at all frequencies, they would also have the same pass band .However ,
cascading is not a proper solution from a practical point of view .

This is because practical elements have a certain resistance, which gives rise to
attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band by
cascading also results in an increase of ‘@’ in the pass band .If the constant k section is regarded as
the prototype, it is possible to design a filter to have rapid attenuation in the stop band , and the
samecharacteristicimpedanceastheprototypeatallfrequencies.Suchafilteriscalledm—derived
filter.SupposeaprototypeT —networkshown inFig.9.18(a)hastheseriesarmmodifiedasshownin Fig.9.18
(b) , where mis a constant . Equating the characteristic impedance of the networks in Fig.9.18, we
have
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Z4/2 Z4l2 mZzil2 mZ4/2
Z, ‘ \ | \ Z%
(a) (b)
Fig.9.18
Lor=Lor’

WhereZor,isthecharacteristicimpedanceofthemodified(m—derived) T-network.

72 272 b
,{T‘-kzlzz = \/""4 L 4 mz,Z}

ZZ 222
o WG, 42 A2 I TTEN, 1
4 4

22
mZ,Z% = —;—(1— m*)+Z,Z,

Vo Z
Z ot ke (Lo g ) st
4m m

(9.27)

ltappearsthattheshuntarmZ ,consistsoftwoimpedancesinseriesasshowninFig.9.19.

m.Z-'.fE m211’2
bt o7 . PR e i el
szm

Z 3 T—rr<)
“rra

Fig.9.19
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FromEq.9.27,1—m2/4mshouldbepositivetoreaIizetheimpedanceZ'zphysicaI|y,i.e.0<m<1.Thusm
—derivedsectioncanbeobtainedfromtheprototypebymodifyingitsseriesand shunt arms .The same
technique can be applied to mt section network. Suppose a prototype nm — network shown in Fig. 9.20
(a) has the shunt arm modified as shown in Fig. 9.20(b).

Zy Z}
2 [= 7] RN [ 8
22 2 22,/m 22,/m

Fig.9.20
ZOT[=Z’ on

WhereZ oristhecha racteristicimpedanceofthemodified(m—derived)n—network.
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Squaringandcrossmultiplyingtheaboveequationresultsasunder.

e d 7
(42,2, + mZI"ZI )= 42,2, + 2,2,

m
2 ol 47,
er =10 = Syt AR ”’?Zl ] — 4Z|Z’
m m 3
or Z.f gpees Zl ZE
I & Z, mZ;
- —_—
4m m 4
s Z\Z,
g 7z
2 + 1L A—-m?)
" 4m
2,2, 4m ‘2 . Z, 4n:
20 (F==m* )\ 7 (I—m~)
“y : 2 ”
7 4 Z,4m
PN i 3 A+ Zym mZ, + B
m(l—m*) Ui 250)

(9.28)

Itappearsthattheseriesarmofthem — derivedmsectionisaparallelcombinationof mZiand 4mz, /1
—m?. The derived m section is shown in Fig.9.21.

m-Derived LowPassFilter

InFig.9.22,bothm—derivedlowpassTand mtfiltersectionsareshown.For the T —section shownin
Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some frequency f,above cut-off
frequency fc.

If the shuntarm is series resonant ,its impedance willbe minimum or zero .Therefore , the
outputiszeroandwillcorrespondtoinfiniteattenuationatthisparticularfrequency.Thus,atfy

1/mw,C=1-m?/4mw,L,wherewsistheresona ntfrequency

159
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mZ 4
- 1]
2Z5/m 1333_ 2 2Z5/m
- -
Fig.9.21
— 2
Tor
mil/2 mlL/2 i1
h mc — BT —
L
1—m?2 mci2 — A = mcl2
4m 4
(a) (b)
Fig.9.22
07 e
(—mLC
1 !
S ==

A O — )

Sincethecut-offfrequencyforthelowpassfilterisf.=1/mvLC

fo= L
1—m®
(9.29)
or
(9.30)
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If a sharp cut-off is desired,fsshould be near to f.. From Eq.9.29,it is clear that for the smaller
the value of m,f,comes close to fc.Equation 9.30 shows that if fiand faare specified , the necessary
value of m may then be calculated. Similarly, for m — derived nt section, the inductance
andcapacitance intheseriesarmconstitutearesonantcircuit.Thus,at f.a frequencycorresponds to
infinite attenuation, i.e. at f,

mow, L — =
[ 1—om ]U—‘f-(?
A
Bt dandfoe
LC(l—m~)
: 1
= ——
AL — 252
S : 1
Since, Lo ~rme—
F N LC
Je

T =i == f
V1 — m?

(9.31)

Thusforboth m—derivedlowpassnetworksforapositivevalueofm(0<m<1),fo>f..
Equations 9.30 or 9.31 can beusedto choose thevalueof m,knowingf.andf. After thevalue of m is
evaluated, the elements of the T or m — networks can be found from Fig.9.22. The variation of
attenuationfor alowpassm— derivedsectioncanbe verifiedfroma=2cosh 'vVZ1/4Z,forf.<f<fa. For Z;=
jwL and Z;= -j/wCfor the prototype.

m /
a = 2cosh Je .
1—[ S ]
Je&
m /
and B=2sin" \A q = 2810 Je
1 -—[ /]2 (1—- m)2
Je.

Figure9.23showsthevariationofa,BandZewithrespectto frequencyfor anm —derived low pass

filter.
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feka =t

Fig.9.23

Example9.3

Designam—derivedlowpassfilterhavingcut-offfrequencyoflkHz, design
impedanceof400Q,andtheresonantfrequency1100Hz.

Solution.k=400Q,f:=1000Hz;f,=1100Hz From

ﬂ f_—z \[ [1000]2
= [1—]:€ — s <
773 [_f:,] 1 1100 0.416

LetusdesignthevaluesoflL andCfora lowpass,K —typefilter(prototypefilter). Thus,

Eq.9.30

k 400
Li== — — 127.32
/. <1000 e
C = ot : 0.795
wkf, . mw=<400x<1000 0> KE

Theelementsofm—derivedlowpasssectionscanbe obtainedwithreferencetoFig.9.22.

ThustheT-sectionelementsare
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mL  0.416x127.32x107
2 2

mC = 0.416 X 0.795 X 106 = 0.33 pF

= 26.48 mH

2 .4
l—m® , _12(0:416)" _ 157 354103 = 63.27 mH
4m 4.0416

The ar-section elements are

mC _ 0.416x0.795x10"°

— 0.165 wF

9 2

2 2
1—m" - 120410) . 579541075 = 0.395 uF
4m 4x0.416 .

mL = 0.416 X 127.32 X 103 = 52.965 mH

Them—derivedLPfiltersectionsareshowninFig.9.24.

52.965 mH

26.48 mH 26.48 mH —/h’b’ms\-q
W ’——;li‘ jthen, l

0.395 uF
63.27 mH > —\>

(a) (b)

0.165 uF
0.165 pF

==

L]

Fig.9.24
m-Derived High Pass Filter
InFig.9.25bothm—derivedhighpassTandn—sectionare shown.

If the shunt arm in T — section is series resonant, it offers minimum or zero
impedance.Therefore,theoutputiszeroand,thus,atresonancefrequencyorthefrequency

corresponds to infinite attenuation.
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Vi 1
W, — =
4m
m o w,——5C
1—m
am i
1—-m?
2CIm 2CIm
: o ——=u | T
Lim clm
20L./m
a4m c 2L /m
= T 1-m? S e i
(a) (b)
Fig.9.25
(02_(.02 ok 1 _]_—mz
T = L A 4L.C
— &
mjil—m

|~ Al
W W ws,

1—m

L

FromEq.9.25,thecut—offfrequencyfcofahighpassprototypefilterisgivenby

foc = fuN1—m?

(9.32)

m=_{1—|—=

(9.33)

Similarly,forthem—derivedmn—section,theresonantcircuitisconstitutedbythe series arm

inductance and capacitance . Thus, at f
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4rn2 e m]
1 — rm haesd o
71
> 1=~
W, — W, =
4r1.C

\..»"l—.rnz S i 1 — m”®
(€0 ] — - - - . —
= > JIrLc Qar~J L.C

R ‘___ il |
] f l
b | |
AttenluatIOL |Pass band -
Band |
|
l
|
0 |
—F.. fc — f
(a)
Fig.9.26

Thusthefrequencycorrespondingtoinfiniteattenuationisthesameforbothsections.
Equation 9.33may be used todetermine m fora given f,and fc. The elements of the m-
derivedhighpassTor n—sectionscan befoundfrom Fig.9.25.Thevariationofa,BandZowith frequency is
shown in Fig. 9.26.

B
[ e 7

0 = =—=ne f Zoxn ;
I |
I f

—7t : Pass band—
Attenuation
Band

(b)

{c) fc f

Fig.9.26
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Example 9.4.

Designam-derivedhighpassfilterwithacut-offfrequencyof10kHz; design
impedanceof5Qandm= 0.4.

Solution.Fortheprototypehighpassfilter,

k 500

LZ ==
4trf 4 <1t < 10000

= 3.978 mH

Sy s ety 1
darkf, 47t < 500 < 10000

= 0.0159 pF

Theelementsofm-derivedhighpasssectionscanbe obtainedwithreferencetoFig.9.25.Thus,

theT-sectionelementsare

2C" ' "20.0159 <1077

r — = 0.0795 wF
L _ 3.978x10 3 e
” 0.4 M s v
4 4<0.4
———C=———"" _0.0159x%10"°% — 0. <
T 1 —(0.4)° =10 0.0302 ¥

The mr-section elemerts are

2L _ 2x%0.0159x10?

53 0.3 = 19.89 mH
4 4<0.4
———— XL =——— 53 978x%<10"°% = 7.5
S s O > 7.577 mH

S Ll b o S 0397 uF
rmn 0.4 i ¢ & Wi

Tand nisectionsofthem—derivedhighpassfilterareshowninFig.9.27.

7.6777 mH
0.0795 uF 0.0795 uF BT
- J L 4 -
e i | b
11

= 2 X

% 9.945 mH £ 0.0397 uF £

o (=]

=] =B

T 00302 uF > &

(a) (b)
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Fig.9.27

BANDPASSFILTER

AsalreadyexplainedinSection 9.1,abandpassfilterisonewhichattenuatesallfrequenciesbelow a lower
cut-off frequency fiand above an upper cut-off frequencyf..Frequencieslyingbetween f;and
focomprise the pass band ,and are transmitted with zero attenuation .A band pass filter may

beobtainedbyusingalowpassfilterfollowedbyahighpassfilterinwhichthecut-offfrequency of thelLP
filterisabovethecut-offfrequency ofthe HP filter , theoverlapthusallowing onlyabandof frequencies
to pass . This is not economical in practice; it is more economical to combine the low and high pass
functions into a single filter section .

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant
frequency,i.e.theresonantfrequencyof theseriesarmandtheresonantfrequencyof theshunt arm are
made equal to obtain the band pass characteristic.

Ly Ly
2 2Cq 2C1 %1 C1

B T A i

C, {W} L Cyl2 +— i% 2Ly Cyf2 E:% 2L

(@) (b)

Ly
T ——

Fig.9.28

Forthisconditionofequalresonantfrequencies.

For this condition of equal resonant frequencies.
L | :
o — = ——— for the series arm
2 2wy(

from which, ?,L,C, =1
(9.34)
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and —— =y L, for the siunt aiii
0y Cy
! ” 2 =
from which, — wyl,C, =1
(9.35)

Wl Cy = 1=l C,

L, CywillaCy
(9.36)

The impedance of the series arm, Z, is given by

. 2
: ; ety —1
S, =TE ]:‘;{w u;cl ]
1

The impedance of the shunt arm, Z, is given by

. 1
JolL, ———— 2
P TG Jwdl,
2 =13 2
JolL, 4 — 1 1 — @ L,
JwC,
2 n
Jw L, C, —1 w
lez — j 1 .‘l J zl’z

=L, | w*LC —1
Cri |l L Cs
FromEq.9.36
Ly Cpr= LGy
L

Z,Z5= feeiodaoic g2

Wherekisconstant.Thus, thefilterisaconstantk— type.Therefore,foraconstantk— typeinthe pass band.

Z

—1< < 0, and at cut-off frequency

2

Z: =422, = —4k*
Zi = Sk

168
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i.e.thevalueofZ;atlowercut-offfrequencyisequaltothenegativeofthevalueofZ;attheupper

cut-offfrequency .

1 1
—+j = | ———} jw, L,
[Jwicl ‘;m,L,] [jm2C1 a0 i]
1 1
L — - — '8
-l [ml I mlcl] [mzcl Fi- ]]

(- oiLC) = "L (@3LE D

2
(9.37)
FromEQ.9.34,L:C1=1/wo’

HenceEq.9.37maybewrittenas

2 2
o g B | 3
2 2

2 2 3
(wy — ®] )w, = w,;(w; —-mg)
2 2 2
WHW, —WW, = W,®; — ®,w
2 .
W (W) +w,) = wyw, (w, + w,)

2
{1)0 — wlwz

Jo = NS5

(9.38)
Zy=—2jk
| | |
8 : | !
< | Pass band | | z
S | |
o | — 47,
! [ I
t f f
I [
| | |
| | |
I | [
1 I |
—-47Z,
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Fig.9.29
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Thus,theresonantfrequencyisthegeometricmeanofthecut-offfrequencies.The

variationofthereactanceswithrespecttofrequencyisshowninFig.9.29.

IfthefilteristerminatedinaloadresistanceR=K,thenatthelowercut-offfrequency.

I
——p J Ll = —2 Tk
[J"J:Ct 1 1_ ¥
1
—_— L, =2k
&J]CI 1
Since LiCy = _]7
(.1.)2 N
——1 = 2KkwC;
Wy
i b
.;ﬂ
S .
= fi]f}_» = 4arkf,C,
Jo —Ji = 4wkf, f5C,
C - —— .L&—“_ f;,
' Ak, 1>
(9.39)
: X |
Since G = —
wq
L =) __ 4vkif;
WG 0 (fa—N)
el il
T w(h—N)
(9.40)

v Jo = NNIVED)
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To evaluate the values for the shunt arm, consider the equation

2122 == .L_Z - _L_l ot kz
(& C,
I, =eat = a1k

: ' A/, />

(9.41)
L 1

and Cy= __:1[: QAL

k* w(f,—h)k
(9.42)

Equations9.39through9.42arethedesignequations ofaprototypeband passfilter.The variation
of a, B with respect to frequency is shown in Fig.9.30 .

oL I

—=

—_—f

Fig.9.30
Example9.5.

Designk—typebandpassfilterhavingadesignimpedanceof500Qandcut-off
frequencieslkHzand10kHz.

Solution.
k=500Q;f1=1000Hz;f,=10000Hz

FromEq.9.40,

1y ff_ et vl IR T
w(f—f)  m™9000 1

L mH = 16.68 mH

FromEq.9.39,

-

_}Iz _f] (}{}(){J

YUdmkf f,  4xmx500%1000x10000

Bl

3pF
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FromEq.9.41,
L, = C,k = 3,57 mH
FromEq.9.42,
C; = A 0.0707 wF
2
k
Eachofthetwoseriesarmsoftheconstantk, T—sectionfilterisgivenby

I :
S 1098 Lasimp
2 2

2C; =2 X 0.143 = 0.286 wF
And the shunt arm elements of the network are given by
C, = 0.0707 pF and L, = 3.57 mH
For the constant-4, 7t section filter the elements of the series arm are
C, =0.143 pF and L, = 16.68 mH
The elements of the shunt arms are

c; _GOTOT

2L, = 2 X 0.0358 = 0.0716 H

BANDELIMINATIONFILTER

Abandeliminationfilterisonewhichpasseswithoutattenuationallfrequencieslessthanthelower

cut-offfrequency fi, andgreater than the upper cut-off frequency f.. Frequencies lying between
fiand foare attenuated. It is also known as band stop filter. Therefore, a band stop filter can be
realized by connecting a low pass filter in parallel with a high pass section, in which the cut-off
frequencyoflowpassfilterisbelowthatofa highpassfilter.Theconfigurationsof Tand riconstant k band
stop sections are shown in Fig.9.31. The band elimination filter is designed in the same manner as is
the band pass filter.

Prepared By Er. Sushree Sangeeta Panda



— B0 —00 B0 )
i1 il i |
201 L2 2C1 2L2 C1 2L2
& Col2 Cal2
- L= i ST CE it O
(a) (b)
Fig.9.31

Asforthebandpass filter,theseriesandshuntarmsarechosento resonateatthesame
frequencywo.Therefore,fromFig.9.31(a),fortheconditionofequalresonantfrequencies

) .
ofq = for the series arm
1
or w?, R
Ll(’l
(9.43)
o L, — ; for the shunt arm
o C
w3 = o
I
(9.44)
1 = = l T k
I“I (—‘] 112 C'z
Thl‘.l.S 14 1 C'I e .[42(.-2
(9.45)
It can be also verified that
£ ;&
(9.46)
(9.47)

Atcut-offfrequencies,Z;=- 47,

MultiplyingbothsideswithZ,,weget
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Z\Z, =1=4ZF = k*
k
2y =xjij—
2 J >
(9.48)

Iftheloadisterminatedinaloadresistance,R=k,thenatlowercut-offfrequency

k
Fya= ) —Wids | = f—
2 J[“’]Cz 12] J2
w,C,
1—wiC,L, :m,q%
FromEq.9.44,
1
L,Cr =—5
wWg
2
W) k
B I 5 C
mﬁ 2‘-"1 Z
a2
1 [—’-1-] — kmAC,
So e
- sl (4]
katf, Jo
Since Jo = NS5
RN S
kv | f J>
e ] 'f;._—_fil
kar NHT2
(9.49)
FromEq.9.44,
e 1
T o
1 arkf, f-
LZ (L2 i 1.2

w2Cy @S i)

Since Jo = NS>
L, = k
an(f3 — fi)

(9.50)
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AlsofromEq. 9.46,

]{3 = -—l-ﬁ—- == Lz
G G
L =kC, = ﬁ[jz .__.‘f']
wl Nifa
(9.51)
LZ
and C; ="—3
k
(9.52)
1

~amk(f, — f;)

Z4
Pass

s

Attenuation

Lin fo

Fig.9.32

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 9.49
throughEq.9.52isthedesignequationsofaprototype bandeliminationfilter.Thevariationof o, with

respect to frequency is shown in Fig.9.33 .
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B

— e e e e ——

P |

£y fo >

Bl B e ot s B s

Fig.9.33

Example9.6.

Designabandeliminationfilterhavingadesignimpedanceof600Qand cut-off

frequenciesfi=2kHzandf,=6 kHz.

Solution.(f,—f1)=4kHz

MakinguseoftheEqgs.9.49through9.52inSection9.10,wehave
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L _k[fa=A|_ _ 600x4000 2l TN
w| Sl % 2000 x 6000
1 1
== = = 0.033 uF
dmk(f, — f;)  4xmwx600(4000)
Lo 1 _ o) e 12 mH
dwk(f, — f;)  4mw(4000)
C, = ) ol e, ulill }:U.l?ﬁp.F
kw| Ao 600 x 7 [ 2000 % 6000

Each of the two series arms of the constant &, 7-section filter is given by
% =31.SmH

2C, = 0.066 pF
And the shunt arm elements of the network are
L,=12mH and C, = 0.176 wF
For the constant k, mr-section filter the elements of the series arm are
L, = 63 mH, C, = 0.033 pF

and the elements of the shunt arms are

2L, = 24 mH and % = 0.088 WF
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