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CHAPTER1 

CircuitElementsandLaws 
 

Voltage 
 

Energy is required for the movement of charge from one point to another. Let W 

Joules of energy be required to move positive charge Q columbs from a point a to 

point b in a circuit. We say that a voltage exists between the two points. The voltageV 

between two points may be defined in terms of energy that would be required if a 

charge were transferred from one point to the other. Thus, there can be a voltage 

between two points even if no charge is actually moving from one to the other. 

Voltage between a and b is given by 

 

V=
W

J/C Q 

 

HenceElectricPotential(V)=
Workedare(W)in Joules

 
Charge(Q)incolumbs 

 
Current: 

 
An electric current is the movement of electric charges along a definite path. In caseof 

a conductor the moving charges are electrons. 

The unit of current is the ampere. The ampere is defined as that current which when 

flowing in two infinitely long parallel conductors of negligible crosssection, situated 1meter 

apart in Vacuum, produces between the conductors a force of 2 x 10-7 Newton per metre 

length. 

Power : Power is defined as the work done per unit time. If a field F newton acts for t 

seconds through adistance dmetres alonga straight line, work done W = Fxd N.m. or J. The 

power P, either generated or dissipated by the circuit element. 

P=
wFxd 

t t 



 

Powercan also bewrittenasPower=

 

=  
Work 

Charge 
xCharge

Time 
Voltagex

 
P=VxIwatt. 

 
Energy: Electric energy W is defined as the Power Consumed in a given time. Hence, if 

current IAflowsin an element overatimeperiod tsecond, when avoltageVvoltsisapplied across 

it, the energy consumed is given by

W =Pxt= VxIxtJorwatt.

 
The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of 

energy is kilowatt. hour (Kwh)

Resistance: AccordingtoOhm's lawpotentialdifference (V)across theends of aconductor is 

proportional to the current (I) flowing through the conductorata constant temperature. 

Mathematically Ohm's law is expressed as

 

 
 
 

OrR= 

V Ior V=RxI 

V
whereRistheproportionalityconstantandisdesignatedasthe

I 

resistanceandhas the unitofOhm(

 
Conductance :Voltage is inducedin astationaryconductor when placed ina varying 

magnetic field. The induced voltage (e) is proportional to the time rate of change of 

current, di/dt producing the magnetic field.

Therefore

Ore=L
di
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Powercan also bewrittenasPower=
Work

 
time 

VoltagexCurrent 

: Electric energy W is defined as the Power Consumed in a given time. Hence, if 

current IAflowsin an element overatimeperiod tsecond, when avoltageVvoltsisapplied across 

given by 

W =Pxt= VxIxtJorwatt.second. 

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of 

energy is kilowatt. hour (Kwh) 

: AccordingtoOhm's lawpotentialdifference (V)across theends of aconductor is 

o the current (I) flowing through the conductorata constant temperature. 

Mathematically Ohm's law is expressed as 

whereRistheproportionalityconstantandisdesignatedasthe

resistanceandhas the unitofOhm( ). 

Voltage is inducedin astationaryconductor when placed ina varying 

magnetic field. The induced voltage (e) is proportional to the time rate of change of 

current, di/dt producing the magnetic field. 

Thereforee
di 

dt 

di
 

dt 
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: Electric energy W is defined as the Power Consumed in a given time. Hence, if 

current IAflowsin an element overatimeperiod tsecond, when avoltageVvoltsisapplied across 

The unit of energy W is Joule (J) or watt. second. However, in practice, the unit of 

: AccordingtoOhm's lawpotentialdifference (V)across theends of aconductor is 

o the current (I) flowing through the conductorata constant temperature. 

whereRistheproportionalityconstantandisdesignatedastheconductor 

Voltage is inducedin astationaryconductor when placed ina varying 

magnetic field. The induced voltage (e) is proportional to the time rate of change of 
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eandiarebothfunctionoftime.TheproportionalityconstantLiscalledinductance. 

TheUnitofinductance isHenery(H). 

 
Capacitance: A capacitor is a Physical device, which when polarized by an electric field by 

applying a suitable voltage across it, storesenergy in the form of a charge separation. 

Theabilityofthecapacitortostorechargeismeasuredintermsofcapacitance. 

CapacitenceofacapacitorisdefinedasthechargestoredperVoltapplied. 

 

C=
q 


Coulomb 
Farad v

 Volt 

 
ActiveandpassiveBranch: 

 
A branch is said to be active when it contains one or more energy sources. A passive 

branch does not contain an energy source. 

Branch: Abranchisanelementofthe networkhaving onlytwoterminals. 

 
Bilateralandunilateralelement: 

 
A bilateral element conducts equally well in either direction. Resistors and inductors 

are examples of bilateralelements. When the current voltage relations are different for 

the two directions of current flow, the element is said to be unilateral. Diode is an 

unilateral element. 

Linear Elements: When the current and voltage relationship in an element can be 

simulated by a linear equation either algebraic, differential or integral type, the 

element is said to be linear element. 

Non Linear Elements : When the current and voltage relationship in an element can 

not besimulated by a linear equation, the element is said to be non linear elements. 

Kirchhoff'sVoltageLaw(KVL): 
 

ThealgebraicsumofVoltages(orvoltagedrops)in any closedpathorloopisZero. 
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ApplicationofKVLwithseriesconnected voltagesource. 
 

 
Fig.1.1 

 
V1+V2–IR1–IR2=0 

=V1+V2=I(R1+R2) 
I 

=
V1V2 

R1R2 

 
ApplicationofKVLwhilevoltagesourcesareconnectedinoppositepolarity. 

 

Fig.1.2 

V1–IR1–V2–IR2 –IR3= 0 

 V1– V2=IR1+IR2+IR3 

 V1– V2=I(R1+IR2+IR3) 



7 
 

Prepared By Er. Sushree Sangeeta Panda 

 I =
 V1V2  

R1 R2R3 

 
Kirchaoff's CurrentLaw(KCL): 

 
Thealgebraicsumofcurrentsmeetingat ajunction ormodeiszero. 

 

Fig.1.3 

Considering five conductors, carrying currents I1, I2, I3, I4andI5meeting at a point O. 
Assuming the incoming currents to be positive and outgoing currents negative. 

I1+(-I2)+I3+(-I4)+I5=0 I1– 

I2+ I3– I4+ I5= 0 

I1+I3+I5=I2+ I4 

Thus above Law can also be stated as the sum of currents flowing towards any 
junction in an electric circuit is equal to the sum of the currents flowing away from 
that junction. 

VoltageDivision(SeriesCircuit) 
 

Considering avoltagesource(E)withresistorsR1and R2inseriesacrossit. 
 

 
Fig.1.4 
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I =
 ER1 

R2 

 

VoltagedropacrossR1=I.R1= E.R1

R1R2 

 

Similarlyvoltagedrop acrossR2=I.R2= 
E.R1

 

R1 R2 

 
 

 
CurrentDivision: 

 
A parallelcircuitactsas acurrentdivideras the currentdivides inallbranches ina parallel 

circuit. 

 

Fig.1.5 

 
Fig.shownthecurrentIhasbeendividedintoI1andI2intwoparallelbrancheswithresistances R1and 

R2while V is the voltage drop across R1and R2. 

 

I1=
V

 
R1 

andI2
R2 

 
LetR=Totalresistance ofthe circuit. 

 

Hence 
1
= 11 

R 

 
 R=

R1 R2 

 
 

R1R2  

R1 R2 

V 
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I2=
IR1  

R1R2 

I=
V

R 

V 
R1R2R1

R2 

V(R1R2) 

R1R2 

But = V=I1R1= I2R2 

 
 I= I1R1

 

 I= 
I1(R1R2)

R2 
 
 
 
 

Therefore 
 
 

Similarlyitcanbederivedthat 
 

R1R2 

R1R2 

I1=
IR2  

R1R2 
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CHAPTER2 

 
MagneticCircuits: 

 
Introduction: Magnetic flux lines always form closed loops. The closed path 

followed by the flux lines is called a magnetic circuit. Thus, a magnetic circuit 

provides a path for magnetic flux, just as an electric circuit provides a path for theflow 

of electric current. In general, the term magnetic circuit applies to any closedpath in 

space, but in theanalysis of electro-mechanical and electronic system this term is 

specifically used for circuits containing a major portion of ferromagnetic materials. 

The study of magnetic circuit concepts is essential in the design, analysis and 

application of electromagnetic devices like transformers, rotating machines, 

electromagnetic relays etc. 

MagnetomotiveForce(M.M.F): 
 

Flux is produced round any current – carrying coil. In order to produce the required 

flux density, the coil should have the correct number of turns. The product of the 

current and the number of turns is defined as the coil magneto motive force (m.m.f). 

IfI=Currentthroughthecoil(A) N 

=Numberof turnsin thecoil. 

Magnetomotiveforce=Currentxturns So 

M.M.F = I X N 

The unit of M.M.F. is ampere–turn (AT) but itis taken as Ampere(A) since N 

has no dimensions. 

MagneticFieldIntensity 
 

Magnetic Field Intensityis defined as the magneto-motive force per unit lengthof the 

magnetic flux path. Its symbol is H. 



 

MagneticfieldIntensity(H)

 

 H=FI.N.
A/m

l l 

 
Where l is the mean length of the magnetic 

called magnetic field strength or magnetizing force.

Permeability:- 

Every substance possesses a certain power of conducting magnetic lines 

of force. For example, iron is better conductor for magnetic lin

thanair(vaccum).Permeabilityofamaterial

lines of force. It is the ratio of theflux density. (B) Producedina material to the 

magnetic filed strength (H) i.e. 

Reluctance: 

Reluctance (s) is akin to resistanc

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a 

measure of the opposition offered by a magnetic circuit to the setting up of the 

flux. 

Reluctanceistheratioofmagnetomotiveforcetotheflux.

 
SMmf 

 
Itsunitisampereturnsperwebber(or

 
Permeance:- 

 
Thereciprocalofreluctanceiscalledthepermeance(symbol

 
Permeance (A) = 1/S wb/AT 

Turn T has no unit. 

Hencepermeanceisexpressedinwb/Aor
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MagneticfieldIntensity(H)= Magnetomotiveforce 
Meanlengthofthemagneticpath 

is the mean length of the magnetic circuit in meters. Magnetic field intensity is also 

called magnetic field strength or magnetizing force. 

Every substance possesses a certain power of conducting magnetic lines 

of force. For example, iron is better conductor for magnetic lines of force 

thanair(vaccum).Permeabilityofamaterial( )isitsconductingpowerfor magnetic 

lines of force. It is the ratio of theflux density. (B) Producedina material to the 

magnetic filed strength (H) i.e. =B
H 

Reluctance (s) is akin to resistance (which limits the electric Current). 

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a 

measure of the opposition offered by a magnetic circuit to the setting up of the 

Reluctanceistheratioofmagnetomotiveforcetotheflux.Thus 

Itsunitisampereturnsperwebber(orAT/wb) 

Thereciprocalofreluctanceiscalledthepermeance(symbolA). 

wb/AT 

Hencepermeanceisexpressedinwb/AorHenerys(H). 
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circuit in meters. Magnetic field intensity is also 

Every substance possesses a certain power of conducting magnetic lines 

es of force 

)isitsconductingpowerfor magnetic 

lines of force. It is the ratio of theflux density. (B) Producedina material to the 

e (which limits the electric Current). 

Flux in a magnetic circuit is limited by reluctance. Thus reluctance(s) is a 

measure of the opposition offered by a magnetic circuit to the setting up of the 



 

ElectricFieldversusMagentic

 

 

ElectricField

1) FlowofCurrent
 

2) Emfisthecauseof 

flow of current
 

3) Resistanceoffered 

to the flow of 

Current, is called 

resistance (R)

Conductance
4) 

( )
1 

R 

5) Current density is 

amperespersquare 

meter. 

6) Current (I) 

 

1) Currentactuallyflows 

in an electric Circuit.

 

2) Energy is needed as 

longascurrent
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ElectricFieldversusMagenticField. 

Similarities 

Field 

FlowofCurrent(I) 

Magnetic

1) Flowofflux

Emfisthecauseof 

flow of current 

2) MMfisthecauseof 

flow of flux

Resistanceoffered 

to the flow of 

Current, is called 

resistance (R) 

Conductance 

 

Current density is 

amperespersquare 

Current (I) -EMFR 

3) Resistanceofferedto 

the flow of flux, is 

called reluctance (S)

 
 

4) Permitivity



5) Fluxdensityisnumber 

of lines per square 

meter. 

6) 
Flux( )

Dissimilarities 

Currentactuallyflows 

in an electric Circuit. 

1) Fluxdoesnotactually 

flow in a magnetic 

circuit.

Energy is needed as 

longascurrentflows 

2) Energy is initially 

needed to create the 

magneticflux,butnot
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MagneticField 

Flowofflux( ) 

MMfisthecauseof 

flow of flux 

Resistanceofferedto 

the flow of flux, is 

reluctance (S) 

Permitivity( ) 

Fluxdensityisnumber 

of lines per square 

)
MMF 

S
 

Fluxdoesnotactually 

flow in a magnetic 

circuit. 

Energy is initially 

needed to create the 

magneticflux,butnot 

1 
S 
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tomaintainit. 
 

3) Conductance is 

constant and 

independentofcurrent 

strengthataparticular 

temperature. 

3) Permeability (or 

magnetic 

conductance ) 

dependsonthetotal 

flux for a particular 

temperature. 

 

 
B.H.Curve: 

Place a piece of an unmagnetised iron bar AB within the field of a 

solenoid to magnetise it. The field H produced by the solenoid, is called 

magnetising field, whose value can be altered (increased or decreased) by 

changing (increasing or decreasing) the current through the solenoid. If we 

increase slowly the value of magnetic field (H) from zero to maximum value,the 

value of flux density (B) varies along 1 to 2 as shown in the figure and the 

magnetic materials (i.e iron bar) finally attains the maximum value of flux 

density (Bm) at point 2 and thus becomes magnetically saturated. 

 

Fig. 2.1 

Now if value of H is decreased slowly (by decreasing the current in the 

solenoid) the corresponding value of flux density (B) does not decreases along 

2-1 but decreases some what less rapidly along 2 to 3. Consequently during the 

reversal of magnetization, the value of B is not zero, but is '13' at H= 0. In other 
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wards, during the period of removal of magnetization force (H), the iron bar is 

not completely demagnetized. 

 
In order todemagnetise the iron bar completely, we have to supply the 

demagnetisastion force (H) in the opposite direction (i.e. by reserving the 

direction of current in the solenoid). The value of B is reduced to zero at point4, 

when H='14'. This value of H required to clear off the residual magnetisation, is 

known as coercive force i.e. the tenacity with which the material holds to its 

magnetism. 

 
If after obtaining zero value of magnetism, the value of H is made more 

negative, the iron bar again reaches, finally a state of magnetic saturation at the 

point 5, which represents negative saturation. Now ifthe value of H isincreased 

from negative saturation (='45') to positive saturation ( = '12') a curve '5,6,7,2' is 

obtained. The closed loop "2,3,4,5,6,7,2" thus represents one complete cycle of 

magnetisation and is known as hysteresis loop. 
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c d 

R4 

p 

R1 V3 R8 

a  b e 

R2 

K h g f 

 
NETWORKANALYSIS 

Differentterms aredefinedbelow: 

1. Circuit:Acircuitisaclosedconductingpaththroughwhichanelectriccurrenteither 
. flow orisintendedflow 

2. Network: Acombinationofvariouselectricelements,connectedinany manner. 
Whatsoever, is called an electric network 

3. Node:itisanequipotentialpointatwhichtwoormorecircuitelements arejoined. 

4. Junction:itisthat pointofanetwork where threeormorecircuitelementsarejoined. 

5. Branch:itisapartofanetworkwhichliesbetweenjunctionpoints. 

6. Loop: Itisaclosedpath inacircuitinwhichnoelementor nodeisaccountedmorethan once. 

7. Mesh:Itisaloopthatcontainsnootherloopwithinit. 

Example 3.1 In this circuit configuration of figure 3.1, obtain the no. of i) circuit elements ii) 
nodes iii) junction points iv) branches and v) meshes. 

 

R5 
 
 
 
 
 

 

R6 
 
 
 
 
 
 
 
 
 
 
 

 

V1 R7 
 
 
 
 
 
 
 
 

 

R3 R9 V2 
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Solution:i)no.of circuitelements=12(9 resistors+3voltagesources) 

ii) no.ofnodes=10(a, b,c,d, e,f,g, h,k,p) 

iii) no. ofjunctionpoints=3(b,e,h) 

iv) no.ofbranches=5(bcde,be,bh,befgh,bakh) 

v) no.ofmeshes=3(abhk,bcde, befh) 

MESH ANALYSIS 

Mesh and nodal analysis are two basic important techniques used in finding solutions 
for anetwork.Thesuitabilityofeither meshornodalanalysistoaparticular problemdepends mainly 
on the number of voltage sources or current sources .If a network has a large number of 
voltage sources, it is useful to use mesh analysis; as this analysis requires that all the sources 
in a circuit be voltage sources. Therefore, if there are any current sources in a circuit they 
areto beconvertedinto equivalentvoltagesources,if, onthe other hand, thenetworkhas more 
current sources,nodal analysis is more useful. 

Mesh analysis is applicable only for planar networks. For non-planar circuitsmesh analysis 
is not applicable .A circuit is said to be planar, if it can be drawn on a plane surface without 
crossovers. A non-planar circuit cannot be drawn on a plane surface without a crossover. 

Figure 3.2 (a) is a planar circuit. Figure 3.2 (b) is a non-planar circuit and fig. 3.2 (c) is a 
planar circuit which looks like a non-planar circuit. It has already been discussed that a loopis 
a closed path. Amesh is definedasa loop which does not contain any other loopswithin it. To 
apply mesh analysis, our first step is to check whether the circuit is planar or not and the 
second is to select mesh currents. Finally, writingKirchhoff‘s voltage law equations in terms 
of unknowns and solving them leads to the final solution. 

 

 
 

 

(a) (b)  (c) 

Figure 3.2 

Observation of the Fig.3.2 indicates that there are two loops abefa,andbcdeb in the 
network.LetusassumeloopcurrentsI1andI2withdirectionsasindicatedinthefigure. 
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Considering the loop abefa alone, we observe thatcurrent I1is passing through R1, and (I1-I2) 
is passing through R2. By applying Kirchhoff’s voltage law, we can write 

Vs.=I1R1+R2(I1-I2) (3.1) 
 
 
 

 
R1 R3 

 
 
 
 

Vs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure3.3 

Similarly, if we consider the second mesh bcdeb, the current I2is passing through 
R3and R4,and (I2– I1) is passing through R2.By applying Kirchhoff’s voltage law around the 
second mesh, we have 

R2(I2-I1)+R3I2+R4I2=0 (3.2) 
 
 

Byrearrangingtheaboveequations,thecorrespondingmeshcurrentequationsare 

I1(R1+R2) - I2R2 =Vs. 

-I1R2+(R2+R3+R4)I2=0 (3.3) 
 

 
By solving the above equations, we can find the currents I1and I2,.If we observe 

Fig.3.3, thecircuit consists offive branches and four nodes, includingthe reference node.The 
number of mesh currents is equal to the number of mesh equations. 

And the number of equations=branches-(nodes-1).in Fig.3.3, the required number of 
mesh current would be 5-(4-1)=2. 

a b c 

R2 

R4 

± I1 I2 

f e d 
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IngeneralwehaveBnumberofbranchesandNnumberofnodesincludingthe reference node 
than number of linearly independent mesh equations M=B-(N-1). 

 
 
 
 
 
 
 
 

Example3.2Writethemesh 
 

 
currentequationsinthecircuit shown 10V 

 

 
infig3.4anddetermine thecurrents. 

 

 
Figure3.4 

Solution: Assume two mesh currents in the direction as indicated in fig. 
3.5.Themesh currentequationsare 

 

 
5Ω 

 

 

10V I1 

2Ω 

I2 10Ω 

50V 
 

 
Figure3.5 

5I1+2(I1-I2)=10 

1012+2(12-11)+50=0 (3.4) 

Wecanrearrangetheaboveequationsas 7I1 

-2I2 =10 

-2I1+12I2=-50 (3.5) 

Bysolvingtheabove equations,wehaveI1=0.25A,andI2=-4.125 

5Ω 10Ω 

2Ω 

50v 
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Here the current in the second mesh I2, is negative; that is the actual current I2 flows opposite 
to the assumed direction of current in the circuit of fig .3.5. 

Example3.3Determine the mesh currentI1inthecircuitshowninfig.3.6. 
 

 
10Ω 2Ω   

 

 
5Ω I2 + 10V 

I1 1Ω 

50V ‐ 

3Ω 5V 

I3 
 
 

 

Figure3.6 
 

 
Solution: From the circuit, we can from the following three mesh equations 

10I1+5(I1+I2)+3(I1-I3)=50 (3.6) 

2I2+5(I2+I1)+1(I2+I3)= 10 (3.7) 

3(I3-I1)+1(I3+I2)=-5 (3.8) 

Rearrangingtheaboveequationswe get 

18I1+5I2-3I3=50 (3.9) 

5I1+8I2+I3=10 (3.10) 

-3I1+I2+4I3=-5 (3.11) 

Accordingtothe Cramer’srule 



 

I1 

 
  

 

 
I1= 

 
 
 
 

 
OrI1=3.3ASimilarly, 

18 50 3 

5 10 1 

I=
3 5 4 

=355 
  

2 18 5 3 
5 8 1 

 3 1 4 

356 

OrI2=-0.997A 
 

 

 
I= 

3 

5 8 1 

3 1 4 

 
Or I3=1.47A 

I1=3.3A, I2=-0.997A, I3=1.47A

MESH EQUATIONS BY INSPECTION METHOD
inspection without going through the detailed steps. Consider a three mesh 

The loop equation are I1R1+ R2(I1-I2) 

 
 
 
 
 
 

 

V1 

 
 
 

 

50 5 3  

10 8 1 
 5 1 4 =1175 

18 5 3 356 
5 8 1  

3 1 4  

18 5 50  

5 8 10 
3 1 5 525

18 5 3 356
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R2 I2 V2 

 

 

=1.47A 

MESH EQUATIONS BY INSPECTION METHODThe mesh equations for a general planar network can be writtenby 
inspection without going through the detailed steps. Consider a three mesh networks as shown in figure 3.7

 =V1 R1

 R3R4 

 

Figure3.7 
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I3 

 (3.12) 

 (3.13) 

The mesh equations for a general planar network can be writtenby 
networks as shown in figure 3.7 

 R5 



 

R2(I2-I1)+I2R3=-V2 

R4I3+R5I3=V2 

Reordering theaboveequations,we

(R1+R2)I1-R2I2=V1 

-R2I1+(R2+R3)I2=-V2 

(R4+R5)I3=V2 

Thegeneralmeshequationsforthreemeshresistivenetworkcanbewrittenas 

R12I2 R13I3= Va 

R21I1+R22I2 R23I3=V

R31I1 R32I2+R33I3=V

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 
3.21respectively, the following observations can be taken into account.

1. Theself-resistanceineach
2. Themutualresistancesbetweenall pairsofmeshes
3. Thealgebraic sumofthevoltagesineach
The self-resistance of loop 1, R

I1passes. 
The mutual resistance of loop 1, R

currents I1and I2.If the directions of the currents passing through the common resistances are 
the same, the mutual resistance will have a positive sign; and if the directions of the currents 
passing through the common resistance are opposite then the mutual resistance will
negative sign. 

Va=V1is the voltage which drives the loop 1. Here the positive sign is used if 
the direction of the currents is the same as the direction of the source. If the current 
direction is opposite to the direction of the source, then the ne

Similarly R22=R
respectively. The mutual resistances R
sums of the resistances common to the mesh currents indicated in their subscrip

Vb=-V2,Vc= V2
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 3.14 

 3.15 

Reordering theaboveequations,wehave 

 3.16 

 3.17 

 3.18 

Thegeneralmeshequationsforthreemeshresistivenetworkcanbewrittenas R11

 3.19 

=Vb 3.20 

=Vc 3.21 

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 
3.21respectively, the following observations can be taken into account. 

resistanceineachmesh 
Themutualresistancesbetweenall pairsofmeshesand 

sumofthevoltagesineachmesh. 
resistance of loop 1, R11=R1+R2, is the sum of the resistances through which 

The mutual resistance of loop 1, R12= -R2, is the sum of the resistances common to loop 
If the directions of the currents passing through the common resistances are 

the same, the mutual resistance will have a positive sign; and if the directions of the currents 
passing through the common resistance are opposite then the mutual resistance will

is the voltage which drives the loop 1. Here the positive sign is used if 
the direction of the currents is the same as the direction of the source. If the current 
direction is opposite to the direction of the source, then the negative sign is used.

=R2+R3and R33=R4+R5are the self-resistances of loops 2 and 3 
respectively. The mutual resistances R13=0, R21= -R2, R23=0, R31

sums of the resistances common to the mesh currents indicated in their subscrip
2arethesumofthevoltagesdrivingtheirrespective
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11I1 

By comparing the equations 3.16, 3.17 and 3.18 with equations 3.19, 3.20 and 

, is the sum of the resistances through which 

, is the sum of the resistances common to loop 
If the directions of the currents passing through the common resistances are 

the same, the mutual resistance will have a positive sign; and if the directions of the currents 
passing through the common resistance are opposite then the mutual resistance will have a 

is the voltage which drives the loop 1. Here the positive sign is used if 
the direction of the currents is the same as the direction of the source. If the current 

gative sign is used. 
resistances of loops 2 and 3 

31=0, R32=0 are the 
sums of the resistances common to the mesh currents indicated in their subscripts. 

arethesumofthevoltagesdrivingtheirrespective loops. 



 

1 

+ 

 
 

 
Example 3.4write themeshequationforthecircuitshown infig.

 
 
 
 
 

 
 

 
10V- 

 
 
 
 
 
 

Solution:thegeneralequationforthreemeshequation

R11I1 R12I2 R13I3=Va 

R21I1+R22I2 R23I3=V

R31I1 R32I2+R33I3=V

Considerequation3.22 

R11=selfresistanceofloop1=(1

R12=themutualresistancecommontoloop1andloop 2 =

Herethenegativesignindicatesthat 

mutual resistance common to loop 1 & 3= 

Va=+10V,the voltage the drivingthe loop

HerehepositivesignindicatestheloopcurrentI

element. 

Thereforeequation3.22canbe written

Prepared By Er. Sushree Sangeeta Panda

3Ω 
2Ω 
I2 

I1 

5V 
_ + 
 

I3 

6Ω 

- 

+ -20V  

write themeshequationforthecircuitshown infig.3.8 

 4

Figure3.8 

thegeneralequationforthreemeshequationare 

 (3.22) 

=Vb (3.23) 

=Vc (3.24) 

 

=selfresistanceofloop1=(1Ω+ 3Ω+6Ω)=10 Ω 

=themutualresistancecommontoloop1andloop 2 =-3 Ω 

Herethenegativesignindicatesthat thecurrentsareinoppositedirection.

mutual resistance common to loop 1 & 3= -6 Ω 

=+10V,the voltage the drivingthe loop1. 

HerehepositivesignindicatestheloopcurrentI1isinthesamedirectionasthe 

Thereforeequation3.22canbe writtenas 
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5Ω 

4Ω 

thecurrentsareinoppositedirection.R13= the 

isinthesamedirectionasthe source 
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10I1-3I2-6I3=10V (3.25) 

ConsiderEq.3.23 

R21=themutualresistancecommontoloop1andloop 2 =-3 Ω 

R22= self resistance of loop 2=(3Ω+ 2 Ω +5 Ω) =10 Ω 
R23=0,thereisnocommonresistancebetweenloop2and3. Vb = -
5 V, the voltage driving the loop 2. 

ThereforeEq. 3.23canbewrittenas 
-3I1+10I2=-5V (3.26) 

ConsiderEq.3.24 
R31=themutualresistancecommontoloop1andloop3= -6Ω R32= 
the mutual resistance common to loop 3 and loop 2 = 0 R33= self 
resistance of loop 3=(6Ω+ 4 Ω) =10 Ω 
Vc=thealgebraicsumofthevoltage drivingloop3 
=(5 V+20V)=25V (3.27) 

Therefore,Eq3.24canbewrittenas-6I1+10I3= 25V 
-6I1-3I2-6I3=10V 
-3I1+10I2=-5V 
-6I1+10I3=25V 

SUPERMESHANALYSIS 

Suppose any of the branches in thenetwork has acurrent source, then it isslightly difficultto 
apply mesh analysis straight forward because first we should assume an unknown voltage 
across the current source, writing mesh equation as before, and then relate the source current 
to theassignedmesh currents. Thisisgenerally adifficult approach.Onway to overcomethis 
difficulty is by applying the supermesh technique. Here we have to choose the kind of 
supermesh. A supermesh is constituted by two adjacent loops that have a common current 
source. As an example, consider the network shown in the figure 3.9. 

 
 
 
 
 

 
R4 

 R2  

+ V I1 I2 R3 I3 

- 

1 I 2 3 

Figure3.9 
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a b II 

I 10Ω I2 

2A f 

+ I1 3Ω 

I3 

5Ω 

d 

Herethecurrent sourceI isinthecommon boundaryfor thetwomeshes1and2.Thiscurrent source 
creates a supermesh, which is nothing but a combination of meshes 1 and 2. 

R1I1+ R3(I2-I3)=V 

Or R1I1+R3I2-R4I3=V 

Consideringmesh3,wehave 

R3(I3-I2)+ R4I3=0 

Finally thecurrentI fromcurrent sourceisequaltothedifferencebetweentwomeshcurrents i.e. 

I1-I2=I 

wehavethusformedthreemeshequationswhichwecansolveforthethreeunknown currents in the 
network. 

Example3.5.Determinethecurrentinthe5ΩresistorinthenetworkgiveninFig.3.10 
 

 
e 

2Ω 
 

 
50v 1 Ω 

 
 
 
 
 

 
Figure3.10 

Solution:-Fromthefirstmesh,i.e.abcda,wehave 

50=10(I1-I2)+5(I1-I3) 

Or15I1-10I2-5I3=50 (3.28) 
 
 

Fromthesecondandthirdmeshes.wecan form asupermesh 

10(I2-I1)+2I2+I3+5(I3-I1)=0 

Or-15I1+12I2+6I3=0 (3.29) 
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Thecurrentsourceisequal tothedifferencebetween IIand IIImesh currents 

i.e.I2-I3= 2A (3.30) 

Solving3.28.,3.29and3.30.wehave 

I1=19.99A,I2=17.33A,andI3=15.33A 

Thecurrentinthe5Ωresistor =I1-I3 

=19.99-15.33=4.66A 

The currentinthe5Ωresistoris4.66A. 

Example 3.6. Write the mesh equations for the circuit shown in fig. 3.11 and determine the 
currents, I1, I2and I3. 

 
 
 
 
 
 
 
 

1Ω 
 
 
 
 

 
Figure3.11 

 

 
Solution ;In fig 3.11, the current source lies on the perimeter of the circuit, and 

thefirst mesh is ignored. Kirchhoff‘s voltage law is applied only for second and third meshes 
. 

Fromthesecondmesh,wehave 

3(I2-I1)+2(I2-I3)+10 =0 

Or -3I1+5I2-2I3=-10 (3.31) 
 
 

Fromthethirdmesh,wehave I3 + 

2 (I3 -I2) =10 

Or -2I2+3I3=10 (3.32) 

10V 

I1 

I2 I3 

10A 3Ω 

2Ω 

I II III 
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R2 R4 

R1 R3 

1 2 

R1 

From the first mesh, I1=10A (3.33) 

From the abovethree equations, we get 

I1=10A, I2=7.27, I3=8.18A 
 

 
NODALANALYSIS 

In the chapter I we discussed simple circuits containing only two nodes, including the 
reference node. In general, in a N node circuit, one of the nodes is chosen as the reference or datum 
node, then it is possible to write N -1nodal equations by assuming N-1 node voltages.For example,a10 
node circuit requires nine unknown voltages and nine equations. Each node in a circuit can be 
assigned a number or a letter. The node voltage is the voltage of a given node with respect to 
oneparticularnode, called thereferencenode, which weassumeat zero potential. In thecircuit shown in 
fig. 3.12, node 3 is assumed as theReference node. The voltage at node 1 is the voltage at that node 
with respect to node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to node 
3. Applying Kirchhoff’s current law at node 1, the current entering is the current leaving (See 
Fig.3.13) 

1 2 
 
 
 
 

 
I1 R5 

 
 
 
 
 

 

3 Figure3.12 

R2 

 
I1 

 
 
 
 
 
 
 

 

Figure3.13 

I1= V1/R1 + (V1-V2)/R2 
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10Ω 2Ω 

3Ω 

5Ω 5A 1Ω 

WhereV1andV2arethevoltagesatnode1and2,respectively.Similarly,atnode 
2.the currententeringisequaltothecurrentleaving asshown infig.3.14 

 
 
 
 
 

 
Figure3.14 

 
 

 

 
(V2-V1)/R2+V2/R3+V2/(R4+R5)=0 

Rearrangingtheaboveequations,wehave 

V1[1/R1+1/R2]-V2(1/R2)= I1 

-V1(1/R2)+V2[1/R2+1/R3+1/(R4+R5)]=0 

Fromthe above equationswecanfindthe voltagesateachnode. 

Example3.7Determinethevoltagesateachnodeforthecircuitshowninfig3.15 

3Ω 
 
 
 
 
 
 
 

10V 6Ω 

 
Figure3.15 

 
Solution:Atnode1,assumingthatallcurrentsareleaving,wehave (V1-

10)/10 + (V1-V2)/3 +V1/5 + (V1-V2)/3 =0 
Or V1[1/10+1/3+1/5+1/3]-V2[1/3+ 1/3]=1 

0.96V1-0.66V2= 1 (3.36) 
At node 2,assuming that all currentsare leaving except the current from current source,wehave 

(V2-V1)/3+(V2-V1)/3+(V2-V3)/2=5 
-V1[2/3]+V2[1/3+1/3+1/2]-V3(1/2)=5 
-0.66V1+1.16V2-0.5V3= 5 (3.37) 

R2 R4 

R3 R5 
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Atnode3assumingallcurrentsareleaving,wehave (V3-

V2)/2 + V3/1 + V3/6 =0 

-0.5V2+1.66V3=0 (3.38) 

ApplyingCramer’srulewe get 
 

1 

5 

V= 
0
 

0.66 

1.16 
0.5 

0 
0.5 

7.154 
1.66 = 8.06 

 
 

1 0.96 0.66 0 0.887 
0.66 1.16 0.5 

0 

Similarly, 

0.5 1.66 

0.96 1 

0.66 5 

V= 
0 0 

0 

0.5 
1.66 =9.0610.2 

 
 

2 0.96 0.66 0 
0.66 1.16 0.5 

 
 

0.887 

0  0.5 1.66 

0.96 
0.66 

V= 
0
 

0.66 1 

1.16 5 
0.5 0 

 

 

2.733.07 
 

 

3 0.96 0.66 0 
0.66 1.16 0.5 

0.887 

0 0.5 1.66 
 

NODALEQUATIONS BYINSPECTION METHOD The nodalequationsfora generalplanarnetwork can also be written by 
inspectionwithout going through the detailed steps. Consider a three node resistive network, including the reference node, as shown infig 
3.16 

 

R1 R3 R5 
 
 
 
 
 

 

V1 
 

V2 

 
 
 
 

 
Figure3.16 

a b 

R2 R4 

c 



 

Infig. 3.16thepointsaandbaretheactualnodesandcisthereferencenode. Now 

consider the nodes a and b separately as shown in fig 3.17(a) and (b)

 
R1Va 

 
 

 

V1 
 
 
 
 
 

 

 

Infig3.17(a),accordingtoKirchhoff’scurrentlawwehave 

I1+I2+I3=0 

(Va-V1)/R1+Va/R2+(Va-Vb)/R3

Infig3.17(b),ifweapplyKirchhoff’scurrent

I4+I5=I3 

(Vb-Va)/R3+ Vb/R4+(Vb-V2)/R

Rearrangingtheaboveequationswe

(1/R1+1/R2+1/R3)Va-(1/R3)V

(-1/R3)Va+(1/R3+1/R4+1/R

In general, theabove equationcanbe written

GaaVa+ GabVb=I1 

GbaVa+ GbbVb=I2 

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 
a, Gaa=(1/R1+ 1/R2+ 1/R3) is the sum of the conductances connected to node a. Similarly, 
Gbb= (1/R3+ 1/R4+1/R5) is the sum of the conductances connected to node b. G
the sum of the mutual conductances connected to node 
conductances have negative signs. Similarly, G
connected between nodes b and 
node b, respectively. The current which drives into the node has positive s
current that drives away from the node has negative sign.

I1 I5 
 

R2 

(a) 
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3.16thepointsaandbaretheactualnodesandcisthereferencenode. Now 

consider the nodes a and b separately as shown in fig 3.17(a) and (b) 

 R3 R3 Vb R5 

Vb Va 

Figure3.17 

Infig3.17(a),accordingtoKirchhoff’scurrentlawwehave 

3=0 

 
 

 
(3.39) 

Infig3.17(b),ifweapplyKirchhoff’scurrentlaw  

)/R5=0 

 
 

(3.40) 

Rearrangingtheaboveequationswe get  

)Vb=(1/R1)V1 (3.41) 

+1/R5)Vb=V2/R5 (3.42) 

In general, theabove equationcanbe writtenas  

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 
) is the sum of the conductances connected to node a. Similarly, 

) is the sum of the conductances connected to node b. G
the sum of the mutual conductances connected to node a and node b. Here all the mut
conductances have negative signs. Similarly, Gba= (-1/R3) is also a mutual conductance 

and a. I1and I2are the sum of the source currents at node 
, respectively. The current which drives into the node has positive s

current that drives away from the node has negative sign. 

 I3 I3 
 

R4 I4 

(b) 
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(3.43) 

(3.44) 

By comparing Eqs 3.41,3.42 and Eqs 3.43, 3.44 we have the self conductance at node 
) is the sum of the conductances connected to node a. Similarly, 

) is the sum of the conductances connected to node b. Gab=(-1/R3) is 
. Here all the mutual 

) is also a mutual conductance 
are the sum of the source currents at node a and 

, respectively. The current which drives into the node has positive sign, while the 

I5 

V2 
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Example3.8forthecircuitshowninthefigure3.18writethenodeequationsbythe 

inspection method. 

 
 
 

 
4Ω 

 
 
 
 
 
 
 

 
Fig3.18 

 
Solution:- 

 
The generalequationsare 

GaaVa+GabVb=I1 (3.45) 

GbaVa+ GbbVb=I2 (3.46) 

Considerequation 3.45 
 

Gaa=(1+1/2+1/3)mho.Theself conductanceatnode aisthesumoftheconductancesconnected to 

node a. 

Gbb=(1/6+1/5+1/3)mhotheself conductanceatnode bisthesumof conductancesconnected to 

node b. 

Gab=-(1/3)mho, themutualconductancesbetweennodesaandbisthesumof the conductances 

connected between node a and b. 

SimilarlyGba=-(1/3),thesumofthemutualconductancesbetweennodes banda. I1=10/1 =10 

A, the source current at node a, 

a b 

1Ω 3Ω 2Ω 

5Ω 

10V 2Ω 

2V 5V 
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1 2 3 

R2 VX 

R1 R3 R4 

VY 

I2=(2/5+5/6)=1.23A,thesourcecurrentatnodeb. 

Therefore, the nodal equations are 

1.83Va-0.33Vb=10 (3.47) 
 

-0.33Va+0.7Vb=1.23 (3.48) 

SUPERNODEANALYSIS 
 

Supposeany of thebranchesin thenetwork hasa voltagesource, thenit isslightly difficult to 

apply nodal analysis. One way to overcome this difficulty is to apply thesupernode technique. 

In this method, the two adjacent nodes that are connected by a voltage source are reduced to a 

single node and then the equations are formed by applying Kirchhoff’s current law as usual. 

This is explained with the help of fig. 3.19 

V1 V2 + _ V3 
 
 
 
 
 
 

 

I R5 

 
 
 

 
4 

 
FIG3.19 

 
 
 
 
 

It isclearfromthefig.3.19,thatnode4isthereference node.ApplyingKirchhoff’s current 

law at node 1, we get 

I=(V1/R1)+(V1-V2)/R2 

DuetothepresenceofvoltagesourceVχinbetweennodes2and3,itisslightly 

difficult to find out the current. The supernode technique can be conveniently applied in this 

case. 

Accordingly,we canwritethecombinedequationfornodes2and3as under. 
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(V2-V1)/R2+V2/R3+(V3-Vy)/R4+V3/R5=0 
 

Theotherequationis 

V2-V3=Vx 

Fromtheabove threeequations,wecanfindthe threeunknownvoltages. 
 
 
 

 
Example3.9Determinethecurrentinthe5Ωresistorforthecircuitshowninfig. 

3.20 

2Ω 
 
 
 

 
2Ω 

 

 
fig.3.20 

 
 
 

 
Solution.Atnode1 

10= V1/3+(V1-V2)/2 

Or V1[1/3+1/2]-(V2/2)-10=0 

0.83V1-0.5V2-10=0 (3.49) 
 
 

Atnode2and3,thesupernodeequationis 
 

(V2-V1)/2+ V2/1+(V3-10)/5+V3/2=0 
 

Or –V1/2+V2[(1/2)+1]+V3[1/5+1/2]=2 
 

Or -0.5V1+1.5V2+0.7V3-2=0 (2.50) 
 

The voltagebetweennodes2and3isgivenby 
 

V2-V3=20 (3.51) 

V1 V2 +_---- V3 

20V 

1Ω 5Ω 

10A3Ω 

10V 



 

a 

The current in 5Ω resistor I

10)/5Solvingequation3.49,3.50and3.51,weobtai

n 

V3 =-8.42V 
 

 CurrentsI5=(-8.42

towards node 3. 

 
 
 
 

 
SOURCETRANSFORMATION

In solving networkstofind solutions onemay have to deal with energysources. Ithas 
already been discussed in chapter 1 that basically, energy sources are either voltage sourcesor 
current sources. Sometimes it is necessary to convert a voltagesource to a cur
vice-versa. Any practical voltage source consists of an ideal voltage source in series with an 
internal resistance. Similarly, a practical current source consists of an ideal current source 
parallel with an internal resistance as shown in
resistances of the voltage source V

 
 

 

RV 
 

 
 
 
 
 

 

VS 
 
 
 
 
 
 

 

 

 
Any source, be it a current source or a voltage source, drives 

resistance,andthemagnitudeofthecurrentdependsonthevalueoftheloadresistance.
3.22representsapracticalvoltagesourceandapracticalcurrentsourceconnectedtothe 
resistance RL. 
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Ω resistor I5 =(V3-

Solvingequation3.49,3.50and3.51,weobtai

8.42-10)/5=-3.68A(currenttowardsnode3)i.ethecurrent 

SOURCETRANSFORMATIONTECHNIQUE 

In solving networkstofind solutions onemay have to deal with energysources. Ithas 
already been discussed in chapter 1 that basically, energy sources are either voltage sourcesor 
current sources. Sometimes it is necessary to convert a voltagesource to a cur

versa. Any practical voltage source consists of an ideal voltage source in series with an 
internal resistance. Similarly, a practical current source consists of an ideal current source 
parallel with an internal resistance as shown in figure3.21. Rvand Rirepresent the internal 
resistances of the voltage source Vs ,and current source Is ,respectively. 

 IS 

b fig.3.21 

Any source, be it a current source or a voltage source, drives currentthrough its load 
resistance,andthemagnitudeofthecurrentdependsonthevalueoftheloadresistance.
3.22representsapracticalvoltagesourceandapracticalcurrentsourceconnectedtothe 
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3.68A(currenttowardsnode3)i.ethecurrent flows 

In solving networkstofind solutions onemay have to deal with energysources. Ithas 
already been discussed in chapter 1 that basically, energy sources are either voltage sourcesor 
current sources. Sometimes it is necessary to convert a voltagesource to a current source or 

versa. Any practical voltage source consists of an ideal voltage source in series with an 
internal resistance. Similarly, a practical current source consists of an ideal current source in 

represent the internal 

a 

 b 

currentthrough its load 
resistance,andthemagnitudeofthecurrentdependsonthevalueoftheloadresistance.Fig 
3.22representsapracticalvoltagesourceandapracticalcurrentsourceconnectedtothe same load 

R1 
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RV 
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I IL 

R1 

 a  
 
 
 
 
 

 

RL IS RL 
 
 
 
 
 
 
 

 

b b 

(a) (b) 

Figure3.22 

Fromfig3.22(a)theloadvoltage canbe calculated by usingKirchhoff’svoltage law as 

Vab=Vs-ILRv 

TheopencircuitvoltageVoc=Vs 

TheshortcircuitcurrentIsc=
Vs

 

Rv 
 

from fig3.22(b) 

IL=Is-I=Is-(Vab/R1) 
 

TheopencircuitvoltageVoc=IsR1Th

e short circuit current Isc=Is 

The above two sources are said to be equal, if they produce equal amounts of current 

and voltage when they are connected to identical load resistances. Therefore, by equating the 

open circuit votages and short circuit currents of the above two sources we obtain 

Voc=IsR1=VsIsc=

Is=Vs/Rv 

It follows that 

R1=Rv=Rs; Vs=IsRs 

where Rsis the internal resistance of the voltage or current source. Therefore, any 

practical voltage source, having an ideal voltage Vsand internal series resistance Rscan be 

replacedbyacurrentsourceIs=Vs/RsinparallelwithaninternalresistanceRs.Thereverse 

 a  

VS IL 
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tansformation is also possible. Thus, a practical current source in parallel with an internal 

resistance Rscan be replaced by a voltage source Vs=IsRsin series with an internal resistance 

Rs. 

Example 3.10 Determine the equivalent voltage source for the current source shown in fig 

3.23 

A 
 

 
5A 

 
 
 

 
B 

Figure3.23 

Solution: ThevoltageacrossterminalsAandBisequalto25V. sincetheinternalresistance for the 
current source is 5 Ω, the internal resistance of the voltage source is also 5 Ω. The equivalent 
voltage source is shown in fig. 3.24. 

5Ω 
 
 
 

 
25V 

 
 
 
 
 

 
Fig3.24 

Example3.11Determinetheequivalentcurrentsourceforthevoltagesourceshowninfig.3.25 
 
 
 
 

 
50V 

5Ω 

A 

B 

 A 

30Ω 
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Solution:theshortcircuitcurrentatterminalsAandBisequalto I= 50/30 

= 1.66 A 

A 

1.66A 
 

 
B 

Fig3.26 

Sincetheinternalresistanceforthevoltagesourceis30Ω, the internalresistanceof the 
current source is also 30 Ω. The equivalent current source is shown in fig. 3.26. 

30Ω 
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NETWORKTHEOREMS 

Beforestartthetheoremweshouldknowthebasictermsofthenetwork. 
Circuit:Itisthecombinationofelectricalelementsthroughwhichcurrent passes is 
called circuit. 
Network: It is the combination of circuits and elements is called network. 
Unilateral:Itisthecircuitwhoseparameterandcharacteristicschangewith change 
in the direction ofthe supply application. 
Bilateral:Itisthecircuitwhoseparameterandcharacteristicsdonotchange with the 
supply in either side of the network. 
Node:Itistheinterconnectionpointoftwoormorethantwoelementsis called 
node. 
Branch:Itistheinterconnectionpointofthreeormorethanthreeelementsis called 
branch. 
Loop:Itisacompleteclosedpathinacircuitandnoelementornodeistaken more than 
once. 
Super-PositionTheorem : 
Statement :''It statesthat ina network oflinear resistancescontaining more than 
one source the current which flows at any point is the sum of all the currents 
which would flow at that point if each source were considered separatelyand all 
other sources replaced for time being leaving its internal resistances if any''. 

 

Explanation: 
ConsideringE1source 

 

Step1. 
R2&rareinseriesandparallelwithR3andagainserieswithR1 



 

2 

R 

(R2+r2)|| R3 

(R2r2)R3m 
R2r2R3 

Rt1mR1r1 

I
E1

 
 

1 Rt1 

 
(say) 

I I1 R3 
 

R2r2R3 

II1(R2r2) 

R2r2R3 

Step–2 
ConsideringE2source,R1&r

 

(R1+r1)|| R3 

(R1r1)R3n 
R1r1R3 

Rt2nR2r2 

I
E2

 
 

2 Rt2 

 
(say) 

/ I21(R1r1) 
I3RrR 

1 1 3 

I/I2 R3  
1 RrR 

1 1 3 

Step–3 
CurrentinR1branch=II/ 

1 

CurrentinR2branch=II/ 

CurrentinR3branch=II/ 
3 

The direction of the branch 
valuecurrent. 
Thevenin’sTheorem: 
ThecurrentflowingthroughtheloadresistanceR
A and B of a linear active bilateral network is given by

IL
Vth 

RR R
Voc 

th L i L 

Where Vth = Voc is the open. circuit voltage across A and B terminal when R
removed. 
Ri =Rth is the internal resistances of the network as viewed back into the open 
circuit network from terminals A &
resistances if any. 

2 

3 
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 2 

&r2areseriesandR3parallelandR2inseries

 1 

 3 

The direction of the branch current will be in the direction of the greater 

ThecurrentflowingthroughtheloadresistanceR1connectedacrossanytwo terminals 
A and B of a linear active bilateral network is given by 

is the open. circuit voltage across A and B terminal when R

is the internal resistances of the network as viewed back into the open 
circuit network from terminals A & B with all sources replaced by their internal 
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series 

current will be in the direction of the greater 

connectedacrossanytwo terminals 

is the open. circuit voltage across A and B terminal when RL is 

is the internal resistances of the network as viewed back into the open 
B with all sources replaced by their internal 
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i 

Explanation: 
 

Step–1forfinding Voc 

RemoveRLtemporarilytofindVoc. 

 

I 
E

 
R1R2r 

VocIR2 

Step–2finding Rth 

Removeall the sourcesleaving theirinternal resistances ifany andviewed from 
open circuit side to find out Ri or Rth. 

 

Ri(R1r)||R2R

(R1r)R2 
R1r R2 

Step–3 
 

ConnectinternalresistancesandThevenin’svoltageinserieswithload resistance RL. 



 

WhereRth=theveninresistance 
Vth=thevenin voltage 
Ith=thevenin current

Ri(R1r)||R2 

I 
Vth  

Voc 
 L RR RR 

th L i L 

Example 01- Applyingthevenintheoremfindthefollowingfromgiven 
(i) theCurrent in the load resistanceR

 

Solution:(i)FindingVoc 
Remove15 resistanceandfindtheVoltageacross Aand

 

Vocisthevoltageacross12

Voc=
241218V 

1231 

 
(ii) FindingRth 

RthiscalculatedfromtheterminalA&Bintothe
The 1 resister and 3 in 

parallel 

Rth=3+1 //12 

 

4 123
 

16 
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=theveninresistance 
=thevenin voltage 

=thevenin current 

Applyingthevenintheoremfindthefollowingfromgiven 
theCurrent in the load resistanceRLof15  

resistanceandfindtheVoltageacross AandB 

resister 

iscalculatedfromtheterminalA&Bintothe network. 
 are series and 

41 

Prepared By Er. Sushree Sangeeta Panda 

Applyingthevenintheoremfindthefollowingfromgiven figure 

 then 
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

 
 
 
 
 

 

(iii) I =Voc 
18 

1A. 
th 

L R 
 

 

153 

Example02:Determinethecurrentin1ΩresistoracrossABofthenetwork 
showninfig(a)usingthevenintheorem. 
Solution:Thecircuirtcanberedrawnasinfig(b). 

fig(a),(b),(c),(d)respectively 

Step-1 remove the 1Ω resistor and keeping open circuit .The current source 
isconverted to the equivalent voltage source as shown in fig (c) 
Step-02forfindingtheVthwe'llapplyKVLlawinfig(c) then
 3-(3+2)x-1=0 
x=0.4A 
Vth=VAB=3-3*0.4=1.8V 
Step03-forfindingtheRth,allsourcesaresetbezero 
Rth=2//3=(2*3)/(2+3)=1.2Ω 
Step04-ThencurrentIth=1.8/(12.1+1)=0.82A 

R 
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Example03: The four arms of a wheatstone bridge have the following 
resistances . 

AB=100Ω,BC=10Ω,CD=4Ω,DA=50Ω.AA galvanometer of 20Ω 
resistance is connected acrossBD.Usethevenin theorem to compute the current 
through the galvanometer when the potential difference10V ismaintained across 
AC. 

 
 
 
 
 
 
 
 
 
 

Solution: 

  

step01-Galvanometerisremoved. 
step02-findingtheVthbetweenB&D.ABCisapotentialdivideronwhicha voltage 
drop of 10vtakes place. 
PotentialofBw.r.tC=10*10/110=0.909V 
Potential of D w.r.t C=10*4/54=.741V 
then, 

p.dbetweenB&DisVth=0.909-.741=0.168V 
Step03-finding Rth 
removeallsourcestozerokeepingtheirinternalresistances. 



 

Rth=RBD=10//100+50//4=12.79
Step04; 

lastlyIth=Vth/Rth+RL=0.168/(12.79+20)=5mA
 
 
 
 
 

 
Norton'sTheorem 
Statement :In any two terminal active network containing voltage sources and 
resistances when viewed from its output terminals in equivalent to a constant 
current source and a parallel resistance. The constant current source is equal to 
the current which would flow in a short circuit placed across the terminals and 
parallel resistance is the resistance of the network when viewed from the open 
circuit side after replacing their internal resistances and removing allthe 

In any two terminal active network the current flowing through the load 
resistance RL is given by 

Where Ri is the internal resistance of the network as viewed from the open ckt 
side A & B with all sources being replaced by leaving their internal resistancesif 
any. 

Iscistheshortcktcurrentbetween thetwoterminalsoftheloadresistance when 
it is shorted 
Explanation: 

 
Step–1 
A&Bareshortedbyathickcopperwiretofindout

IscE/(R1r) 
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L 

=10//100+50//4=12.79Ω 

=0.168/(12.79+20)=5mA 

In any two terminal active network containing voltage sources and 
resistances when viewed from its output terminals in equivalent to a constant 

source and a parallel resistance. The constant current source is equal to 
the current which would flow in a short circuit placed across the terminals and 
parallel resistance is the resistance of the network when viewed from the open 

lacing their internal resistances and removing allthe 
OR 

In any two terminal active network the current flowing through the load 
 

I Isc Ri 

Ri RL 

is the internal resistance of the network as viewed from the open ckt 
side A & B with all sources being replaced by leaving their internal resistancesif 

istheshortcktcurrentbetween thetwoterminalsoftheloadresistance when 

A&BareshortedbyathickcopperwiretofindoutIsc 
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In any two terminal active network containing voltage sources and 
resistances when viewed from its output terminals in equivalent to a constant 

source and a parallel resistance. The constant current source is equal to 
the current which would flow in a short circuit placed across the terminals and 
parallel resistance is the resistance of the network when viewed from the open 

lacing their internal resistances and removing allthe sources. 

In any two terminal active network the current flowing through the load 

is the internal resistance of the network as viewed from the open ckt 
side A & B with all sources being replaced by leaving their internal resistancesif 

istheshortcktcurrentbetween thetwoterminalsoftheloadresistance when 
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Isc=E/ (R1+r) 
Step–2 
Removeallthesourceleavingitsinternalresistanceifanyandviewedfrom 
opencircuitsideAandBintothenetworktofindRi. 

 

 
Ri(R1r)||R2 

Ri(R1r)R2/(R1rR2) 
 
 
 
 
 
 
 
 
 
 
 

Step–3 

 
ConnectIsc&RiinparallelwithRL 

I Isc Ri 

RiRL 

Example 01:Usingnorton's theorem find the current that would flow through the 
resistor R2whenit takes the values of 12Ω,24Ω&36Ω respectively in the fig 
shown below. 
Solution: 

L 
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V 
th 

RiRL 

L 

 
Step 01-remove the load resistance by making short circuit. now terminal 
ABshort circuited. 
Step02-FindingtheshortcircuitcurrentIsc 
FirstthecurrentduetoE1is=120/40=3A,andduetoE2is180/60=3A. then 
Isc=3+3=6A 
Step03-findingresistanceRN 
Itiscalculatedbybyopencircuittheloadresistanceandviewedfromopen circuit and 

into the network and all sources are taken zero. 
RN=40//60=(40*60)/(40+60)=24Ω 
i) whenRL=12Ω,IL=6*24/(24+36)=4A 
ii) whenRL=24Ω,IL=6/2=3A 
iii) whenRL=36Ω,IL=6*24/(24+36)=2.4A 

 
 
 
 

 
MaximumPowerTransferTheorem 
Statement :A resistive load will abstractmaximum power from a network when 
the load resistance is equal to the resistance of the network as viewedfrom the 
output terminals(Open circuit) with all sources removed leaving their internal 
resistances if any 
Proof: 

I 
 

VthRi
RL 

Powerdeliveredtotheload resistance 
is given by 
PI2R 

L LL 2 
 

 RL 



 

(RthRL)2 
i L 

L 

V2R 
 th L  

(RR)2 
i L 

PowerdeliveredtotheloadresistanceR

WhendPL0 
dRL 

d V2R 
dR 0 

L 

V2(RR)2V2R 2(RR
th i L thL 

(RiRL)4 
V2(RR)2V2R 2(RR

th i L thL i

V2(RR)22V2R(RR)
th i L thL i 

V2(RR)22V2R(RR) 
th i L thL i 

RiRL2RL 

Ri2RLRL

RiRL 
V2 

(PL)max  th RL 
 
 

V2 

thRL
 

4R2 

(RiRL) 

V2 
th RL

 

4RL
2
 

 
 
 
 

 
MILLIMAN’STHEOREM

According to Millimans Theorem number of sources can be converted 
into a single source with a internal resistance connected in series to it,if the 
sources are in parallel connection.
AccordingtotheMilliman’stheoremtheequivalentvoltage

E
1
E

1
E

1
.. 

1 R 2 R 3 R
E' 1 2

1 11 

R1 R2 
 ..... 

R3 

(PL)maxth 
V2 

4RL
2
 

2 


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PowerdeliveredtotheloadresistanceRLwillbemaximum 

R) 
 i L 0 

R)0 
i L 

0 
 L 

 L 

MILLIMAN’STHEOREM: 
According to Millimans Theorem number of sources can be converted 

into a single source with a internal resistance connected in series to it,if the 
sources are in parallel connection. 
AccordingtotheMilliman’stheoremtheequivalentvoltagesource 

R 

 
3 
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According to Millimans Theorem number of sources can be converted 
into a single source with a internal resistance connected in series to it,if the 
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1 
ol 

E1G1E2G2E3G3.. 
G1G2G3... 

E1
E2

E3.. 
   

R1 R2 R3  

G1G2G3.... 

I1I2I3.. 

G1G2G3... 

Example – Calculate the current across 5Ω resistor by using Milliman’s Thm. 
Only 

Solution:-Given, 
R1=2Ω, R2=6Ω , R3=4Ω, RL=5Ω 
E1=6v, E2=12v 

theresistanceR2isnotcalculatedbecause thereisnovoltagesource 
E1E2E3 

V=E
R1

 


R1 

R2R31 

1 .R2R3 

6012 

2 4 
111. 
2 6 4 

3036
23 

12 


6 

2 
11 

6.54v 

R 1 
1


12
1.09.2 

1 111 

R1 R2 R3 

  

11 11 
12 

I 
Voc 

L 
1.095 

 
6.54 

1.095 
1.07Amp. 

COMPENSATIONTHEOREM: 
Statement: 

It’s states that in a circuit any resistance ‘R” in a branch of network in 
which a current ‘I’ is flowing can be replaced. For the purposes of calculations 
by a voltagesource = - IR 

OR 



 

If the resistance of any branch of network is changed from R to R +4R 
where the currentflowing originaly isi. The change current at any other place in 
the network may be calculated by assuming that one e.m.f 
injected into the modified branc
suppressed and ‘R’ represented by their internal resistances only.

 

Exp–(01) 
Calculatethevaluesofnewcurrentsinthenetworkillustrated
resistor R3 is increased by 30%.
Solution:-Inthegivencircuit,thevalue
I175/(510)5A 

I3I2 5 20
2.5Amp. 

40 
NowthevalueofR3,whenitincrease
R320(20 0.3)26  

IR2620 6  

VI R 
 

2.5 6 

15V 

 
 
5 20 

 
 

100 
5||20   4  

520 25 

I' 
15 150.5Amp 

3 426 30 

I'
0.5 5 

0.1Amp 
2 

I'0.525200.4Amp 
1 25 

I1" 5  0.4  4.6Amp 

I2" 0.12.5 2.6Amp 
I3" 2.50.5 2Amp 

RECIPROCITYTHEOREM
Statement: 
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If the resistance of any branch of network is changed from R to R +4R 
where the currentflowing originaly isi. The change current at any other place in 
the network may be calculated by assuming that one e.m.f –
injected into the modified branch. While all other sources have their e.m.f. 
suppressed and ‘R’ represented by their internal resistances only.

Calculatethevaluesofnewcurrentsinthenetworkillustrated 
is increased by 30%. 
Inthegivencircuit,thevaluesofvariousbranchcurrentsare

 

,whenitincrease30% 

RECIPROCITYTHEOREM: 
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If the resistance of any branch of network is changed from R to R +4R 
where the currentflowing originaly isi. The change current at any other place in 

– I R has been 
h. While all other sources have their e.m.f. 

suppressed and ‘R’ represented by their internal resistances only. 

 ,whenthe 

are 



 

It states that in any bilateral network, if a source of e.m.f ‘E’ in any 
branch produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting 
in the second branch would produce the same current ‘I’ in the 1

 

 
Step– 1First ammeterB reads thecurren
current is given by 
4||12

4 12
3  

16 
R243 9  

I
36
4Amp 
9 

I 
4 12 

B 1231 
48 3Amp 

16 
IB=currentthrough1 resister

 
Step – (II) Then interchanging the sources 
and measuring the current
6 ||12 

6 12


72
4  

 

612 18 
R4318  

 
 
 
 
 

 

I364.5Amp,I
4.5 123Amp

8 A 62 

 
COUPLEDCIRCUITS 
Itisdefinedastheinterconnectedloopsofanelectricnetworkthroughthe magnetic 

circuit. 
Therearetwotypesofinduced

(1) StaticallyInducedemf.
(2) DynamicallyInduced
Faraday’sLawsofElectro-Magnetic
Introduction FirstLaw
Whenever the magnetic flux linked with a circuit changes, an emf is induced in 
it. 
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that in any bilateral network, if a source of e.m.f ‘E’ in any 
branch produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting 
in the second branch would produce the same current ‘I’ in the 1

First ammeterB reads thecurrent in thisbranchdue tothe36v source, the 

resister 

Then interchanging the sources 
and measuring the current 

AmpTransferresistance=
V3612 . 

 I 3 

 
Itisdefinedastheinterconnectedloopsofanelectricnetworkthroughthe magnetic 

Therearetwotypesofinduced emf. 
emf. 

DynamicallyInducedemf. 
Magnetic : 

FirstLaw:
Whenever the magnetic flux linked with a circuit changes, an emf is induced in 
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that in any bilateral network, if a source of e.m.f ‘E’ in any 
branch produces a current ‘I’ any other branch. Then the same e.m.f ‘E’ acting 
in the second branch would produce the same current ‘I’ in the 1st branch. 

t in thisbranchdue tothe36v source, the 

Itisdefinedastheinterconnectedloopsofanelectricnetworkthroughthe magnetic 

Whenever the magnetic flux linked with a circuit changes, an emf is induced in 



 

Wheneveraconductorcutsmagneticfluxanemfisinducedin
SecondLaw:
It states that the magnitude of induced emf is equal to the rate of change of flux 
linkages. 

Theemfinducedisdirectlyproportionaltotherateofchangeoffluxandnumber of 
turns 
Mathematically: 

e
d
 

dt 
e  N 

Or e =N 
d

dt 

Where e=inducedemf
N=No.ofturns 
= flux 

‘-ve’signisduetoLenz’s Law
Inductance:

Itisdefinedasthepropertyofthesubstancewhichopposesanychangein 
Current & flux. 
Unit: Henry 
Fleming’sRightHandRule:

It states that “hold your right 
thumb at right angles to each other. If the fore
field, thumbrepresents the directionofmotionofthe conductor, then themiddle 
finger represents the direction of induced emf.”
Lenz’sLaw:

It states that electromagnetically induced current always flows in such a 
direction that the action of magnetic field set up by it tends to oppose the vary 
cause which produces it. 

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit oppos
change of magnetic flux. 
(2) DynamicallyInducedemf
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OR 
Wheneveraconductorcutsmagneticfluxanemfisinducedin it. 

It states that the magnitude of induced emf is equal to the rate of change of flux 

OR 
Theemfinducedisdirectlyproportionaltotherateofchangeoffluxandnumber of 

emf 
N=No.ofturns 

Law 

Itisdefinedasthepropertyofthesubstancewhichopposesanychangein 

Rule:
It states that “hold your right hand with fore-finger, middle finger and 

thumb at right angles to each other. If the fore-finger represents the direction of 
field, thumbrepresents the directionofmotionofthe conductor, then themiddle 
finger represents the direction of induced emf.” 

It states that electromagnetically induced current always flows in such a 
direction that the action of magnetic field set up by it tends to oppose the vary 

 
OR 

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit oppos
 

DynamicallyInducedemf:
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It states that the magnitude of induced emf is equal to the rate of change of flux 

Theemfinducedisdirectlyproportionaltotherateofchangeoffluxandnumber of 

Itisdefinedasthepropertyofthesubstancewhichopposesanychangein 

finger, middle finger and 
finger represents the direction of 

field, thumbrepresents the directionofmotionofthe conductor, then themiddle 

It states that electromagnetically induced current always flows in such a 
direction that the action of magnetic field set up by it tends to oppose the vary 

Itstatesthatthedirectionoftheinducedcurrent(emf)issuchthatit opposes the 



 

In this case the field is stationary and the conductors are rotating in an 
uniform magnetic field at flux density ‘B” Wb/mt
perpendicular to the magnetic field. Let ‘
moves a distance of ‘dx’nt in time ‘dt’ second.

Theareasweptbytheconductor=
Hencethefluxcut=ldx.B 

Changeinfluxintime‘dt’second

E=Blv 

WhereV
dx

 
dt 

Iftheconductorismakinganangle

(1) StaticallyInducedemf
Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by 

increasing or decreasing. 
Itisdividedintotwotypes

(i) Self-inducedemf. 
(ii) Mutually-inducedemf.
(i) Self-induced emf :It is defined as the emf induced in a coil due to 
thechange of its ownflux linked with the coil.

 
 
 
 
 

 
Ifcurrentthroughthecoilischangedthenthefluxlinkedwithitsown turn will 

also change which will pr
 

Self-Inductance:

e=Blvsin 
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

In this case the field is stationary and the conductors are rotating in an 
uniform magnetic field at flux density ‘B” Wb/mt2 and the conductor is lying 
perpendicular to the magnetic field. Let ‘l’ is the length of the co
moves a distance of ‘dx’nt in time ‘dt’ second. 

Theareasweptbytheconductor=l.dx 

Changeinfluxintime‘dt’second= 
Bldx

dt 

Iftheconductorismakinganangle‘ ’withthemagneticfield,then 

 

StaticallyInducedemf:
Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by 

 
Itisdividedintotwotypes. 

emf. 
It is defined as the emf induced in a coil due to 

thechange of its ownflux linked with the coil. 

Ifcurrentthroughthecoilischangedthenthefluxlinkedwithitsown turn will 
also change which will produce an emf is called self-induced emf.
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In this case the field is stationary and the conductors are rotating in an 
and the conductor is lying 

’ is the length of the conductor and it 

Heretheconductorsareremaininstationaryandfluxlinkedwithit changes by 

It is defined as the emf induced in a coil due to 

Ifcurrentthroughthecoilischangedthenthefluxlinkedwithitsown turn will 
induced emf. 



 

Itisdefinedasthepropertyofthecoilduetowhichitopposesanychange 
(increase or decrease) of current or flux through it.

 
Co-efficientofSelf-Inductance(L)

Itisdefinedastheratioofweberturnsperampereofcurrentinthe

Itistheratiooffluxlinkedperampereofcurrentinthe
1stMethodfor‘L’:

LN
 
I 

Where L=Co-efficientofself
= Number of turns 
= flux 

I=Current 
 

 
2ndMethodforL:
Weknow that 

L
N

 
I 

LIN  

LIN  

L
dI
N

d
 

dt dt 

L
dI
N

d
 

dt dt 

L
dI
e 

dt L 

L
dI 

dt 
eL 

WhereL=Inductance 
eN

d
isknownasself

L dt 

When
dI
1amp/sec. 

dt 
e=1volt 
L=1Henry 

LeL 

dI 
dt 
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Itisdefinedasthepropertyofthecoilduetowhichitopposesanychange 
(increase or decrease) of current or flux through it. 

Inductance(L):
Itisdefinedastheratioofweberturnsperampereofcurrentinthe

OR 
Itistheratiooffluxlinkedperampereofcurrentinthe coil 

efficientofself-induction N 
 

 

isknownasself-inducedemf. 
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Itisdefinedasthepropertyofthecoilduetowhichitopposesanychange 

Itisdefinedastheratioofweberturnsperampereofcurrentinthecoil. 



 

Acoilissaidtobea self
Whenthecurrentthroughitchangesattherateof1amp/
3rdMethodforL:

LMoMrAN2 

l 

WhereA=Areaofx-sectionofthecoil N = 
Number of turns 
L=Lengthofthecoil 

(ii) MutuallyInducedemf
It is defined as the emf induced in one coil due to change in current in 

other coil. Consider two coils ‘A’ and ‘B’ lying close to
be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the 
position of the rheostat. 

MutualInductance:
Itisdefinedastheemfinducedincoil‘B’duetochangeofcurrentincoil ‘A’ is 

the ratio of flux linkage in coil ‘B’ to 1 
Co-efficientofMutualInductance

Coefficient of mutual inductance between the two coils is defined as the 
weber-turns in one coil due to one ampere current in the other.
1stMethodfor‘M’:

MN21 

I1 

N2 = Number of turns 
M=MutualInductance 

1= flux linkage 

I1=Currentin ampere
2ndMethodforM:
Weknow that 

MN21 

I1 
MI1N2 1 

MI1N2 1 
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Acoilissaidtobea self-inductanceof1Henryif1voltisinducedin
Whenthecurrentthroughitchangesattherateof1amp/sec. 

sectionofthecoil N = 

 
MutuallyInducedemf:
It is defined as the emf induced in one coil due to change in current in 

other coil. Consider two coils ‘A’ and ‘B’ lying close to eachother. An emfwill 
be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the 

Itisdefinedastheemfinducedincoil‘B’duetochangeofcurrentincoil ‘A’ is 
the ratio of flux linkage in coil ‘B’ to 1 amp. Of current in coil ‘A’.

efficientofMutualInductance(M) 
Coefficient of mutual inductance between the two coils is defined as the 
turns in one coil due to one ampere current in the other. 

= Number of turns 
M=MutualInductance 

ampere 
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inductanceof1Henryif1voltisinducedinit. 

It is defined as the emf induced in one coil due to change in current in 
eachother. An emfwill 

be induced in coil ‘B’ due to change of current in coil ‘A’ by changing the 

Itisdefinedastheemfinducedincoil‘B’duetochangeofcurrentincoil ‘A’ is 
amp. Of current in coil ‘A’. 

Coefficient of mutual inductance between the two coils is defined as the 



 

MeM 

dI1 
dt 

M
dI1N 

dt 2dt 

M
dI1e 

dt M 

M
dI1e 

dt M 
 
 

 

Where eM 
 
N2 

d1isknownasmutuallyinduced
dt 

eM1volt 

ThenM= 1Henry 
Acoil issaidtobea

induced when the currentof 1 amp/sec. is changed in its neighbouring coil.
3rdMethodforM:

MMoMrAN1N2 

l 
Co-efficientofCoupling: 

ConsidertwomagneticallycoupledcoilshavingN
respectively. Their individual co

MMAN2 
L1 o r 2 

l 
MMAN2 

L2 o r 2 

l 
The flux 1producedincoil‘A’duetoacurrentofI

LI MMAN2 

11 o r 1

N1 l 

MoMrAN1I1 
1 l 

Supposeafractionofthisfluxi.e. K

ThenM
K1 1 N 

I1 
2 

Similarlytheflux 2producedincoil‘B’duetoI

M1MrAN2I2 
2 l 

Supposeafractionofthisfluxi.e. K

ThenM
K2 2 NK2 N

I2 
1

Multiplyingequation(1)&(2)

d1 

1 
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 11 2 

isknownasmutuallyinducedemf. 

issaidtobea mutualinductanceof1Henrywhen1voltis 
induced when the currentof 1 amp/sec. is changed in its neighbouring coil.

 
ConsidertwomagneticallycoupledcoilshavingN1andN2 

respectively. Their individual co-efficient of self-inductances are

producedincoil‘A’duetoacurrentofI1ampereis 
 I 

1 1 

 N1 

Supposeafractionofthisfluxi.e. K1 1islinkedwithcoil‘B’ 

 KNN ------------------------------------ (1) 
 l/MoMrA 

producedincoil‘B’duetoI2amp.Is 

Supposeafractionofthisfluxi.e. K22islinkedwithcoil‘A’ 
N21N1 -------------------------------------------------------------------------- (2) 

1 l/MoMrA 
(2) 
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mutualinductanceof1Henrywhen1voltis 
induced when the currentof 1 amp/sec. is changed in its neighbouring coil. 

 turns 
inductances are 



 

2 KKN2NM 2
12

2
1
2

2
2 N

l/MMA 
0 

2MMAN2 
o r 

l 

QK1K
M2K2.L .L 

12 

K2
M2. 
L1.L2 

 

 
Where‘K’isknownastheco

Co-efficientofcouplingisdefinedastheratioofmutualinductance between 
two coils to the square root of their self

 
InductancesInSeries(Additive)



Let M=Co-efficientofmutual
L1 = Co-efficient of self
L2=Co-efficientofself

EMFinducedinfirstcoilduetoself
 

eL1
 L 

dI 
 

 

1dt 
Mutuallyinducedemfinfirst

 

eM1
 
M

dI
 
dt 

EMFinducedinsecondcoilduetoself
 

eL2
 L 

dI 
2dt 

Mutuallyinducedemfinsecond
 

eM2
 
M

dI
 

dt 
Totalinducedemf 

ee e e 
L1 L2 M1 

If‘L’istheequivalentinductance,

K
M. 

L1.L2 

K 
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N2 
N1 

 
 r 

 MMAN2 
 1 o r 2 

 l 

K2K 

Where‘K’isknownastheco-efficientofcoupling. 
efficientofcouplingisdefinedastheratioofmutualinductance between 

two coils to the square root of their self- inductances. 

InductancesInSeries(Additive):

efficientofmutualinductance 
efficient of self-inductance offirst coil. 

efficientofself-inductanceofsecondcoil. 
EMFinducedinfirstcoilduetoself-inductance 

Mutuallyinducedemfinfirstcoil 

EMFinducedinsecondcoilduetoselfinduction 

Mutuallyinducedemfinsecondcoil 

 e 
 M2 

If‘L’istheequivalentinductance,then 
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efficientofcouplingisdefinedastheratioofmutualinductance between 



 

dt 

dt 

LL1L22M 

LdI L dIM  

dt 1dt 

L
dI


dI
(LL2M

dt dt 1 

 
InductancesInSeries(Substnactive)

Let M=Co-efficientofmutual
L1=Co-efficientofself
L2-=Co-efficientofself

induced in first coil due to self induction,

e L
dI

 
L1 1dt 

MutuallyinduceddeImfinfdirIstcoil
e M M 

 

M1 

Emfinducedinsecondcoilduetoself
e L

dI
 

L2 2dt 

MutuallyinduceddeImfinsdeIcond
e M M 

 

M2 

Totalinducedemf 
e e  e ee

L1 L2 M1 M2 

ThenL
dI
L

dI 

dt 1dt L

L
dIdI

(LL2M

dt dt 1 
InductancesInParallel:
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MdIL 
  

dI
M

dI 
 

  

 dt 2dt dt 

M) 
2 

InductancesInSeries(Substnactive):

efficientofmutualinductance 
efficientofself-inductanceoffirstcoil 
efficientofself-inductanceofsecondcoil Emf 

induced in first coil due to self induction, 

Istcoil 
 

 dt 
Emfinducedinsecondcoilduetoself-induction 

condcoil 
 

 dt 

ee 
  dI

 dIM
dI  

L2dt
M dt dt 

M) LLL 2M 
2 

 2 
1 


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L2M 
LM 

1 

1 

L 

dt

LettwoinductancesofL1&L

Lettheco-efficentofmutualinductancebetweenthemis
Ii1i2 

dIdi1di2 

dt dt dt 

eLdi1M
di2 

1dt 

L
di2M

di1 

di 
2dt 

L 1M
di2Ldi2

1dt 
(LM) 

di
dt 2dt
1(LM

 

1 dt 2 
di1(L2M)di2 
dt (L1M)dt 

dIdi1di2dt
 dt dt 

(L2M)di2di
(L1 M)dt 

dI
dt 1

di2

If‘L’istheequivalentinductance

eL
di

 
dt L1 

di1Mdt 

L
di
Ldi1M 

di2dt
 1dt dt 
di1Ldi1M 

 
  

dt L 1dt 

Substitutingthevalueof
di1

 

di
 L

L2M
M

di2 --------------------------------

dt 1L1M 

Equatingequation(3)&(5) 
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dt 



L2areconnectedinparallel 

efficentofmutualinductancebetweenthemisM. 

 (1) 

 dt 
 

 dt 

 di1 
 

 

dt 
M) 

dt 
di2 
 

 dt 
 (2) 

di2 
 dt 

2 
(3) 

inductance 

M
 di2 

 
 

dt 

dt 

 
 

- --------------------------- (4) 

------------------------------------------------------------------ (5) 
 dt 

 

di2 

dt 

M 
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L 

L
L1L2M 2 

L1L22M 

L2M 1di21 
LM  dt  L

1 

L2M 1 
LM 

1 1 L1
LLMLM 

2 1  
L1M  

LL 2M 1 L L
1 2  12

L1M L 

LL2M
1
LLM2

1 2 L 
 

Whenmutualfieldassist. 

 
Whenmutualfieldopposes.

CONDUCTIVELYCOUPLEDEQUIVALENT
 

The Loop equation are fromfig(a)
VLdiMdi2 

1 1dt dt 

VLdi2M
di1 

2 2dt dt 
 
 
 
 
 
 
 

 
Theloopequationarefrom

V1(L1
M)

di1M 
dt 

L
LLM2 

L1L22M 
12 
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L1
L2M M di2 

L LM dt 
 1 

 L2M 

L1M 
M 

 1 LLLMLMM2  
 12 1 1  

 L L1M 
L LM2  
12  

 L1M 

 
 12 

opposes. 
CONDUCTIVELYCOUPLEDEQUIVALENTCIRCUITS

The Loop equation are fromfig(a)

Theloopequationarefromfig(b) 
d 

dt
(i1 i2) 
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CIRCUITS 

 



 

V2(L2 M)
di2M 

dt 

Which,onsimplification
VLdi1M

di2 
1 1dt 

VLdi2M
di1 

2 2dt 

Socalledconductivelyequivalentofthemagneticcircuit.
representZA = L1-M . 

In case M is + ve and both the currents then Z
also , ifis – ve and currents in the common branch opposite to each other Z
L1+M , ZB = L2+Mand ZC

Similarly, if M is –ve but the two currents in the common branch are 
additive,then also. 

ZA=L1+M,ZB

FurtherZA , ZB and ZC may also be assumed to be the T equivalent of the 
Exp.-01: 

Two coupled cols have self inductancesL
The coefficient of coupling (K) being 0.75 in the air, find voltage in the second 
coil and the flux of first coil provided the second coils has 500 turns and the 
circuit current is given by i
Solution: 

MK 

M0.7510103 20

M10.6 103H 

 
Thevoltageinducedinsecondcoil

 M
di1

 

2 dt 
M

di 
dt 

d 
 10.6 103 (2sin314t) 

dt 

10.6 103 2 314cos314t. 

ThemagneticCKtbeinglinear,

MN22500 (K1) 

i1 

 
M 

500 K 

i1 

i10.6 103 
1 500 0.75 

 

= 5.66 10-5sin314t 

L1L2 
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d 

dt
(i1 i2) 

Which,onsimplificationbecome 

 dt 

 dt 

Socalledconductivelyequivalentofthemagneticcircuit. 

ZB= (L2-M)andZ
In case M is + ve and both the currents then ZA = L1-M , ZB = L2

ve and currents in the common branch opposite to each other Z

C = - M. 
ve but the two currents in the common branch are 

B=L2+MandZC=-M. 
may also be assumed to be the T equivalent of the 

Two coupled cols have self inductancesL1= 10 10-3H and L
The coefficient of coupling (K) being 0.75 in the air, find voltage in the second 
coil and the flux of first coil provided the second coils has 500 turns and the 
circuit current is given by i1 = 2sin 314.1A. 

20103 

Thevoltageinducedinsecondcoil is 

linear, 

 
2sin314t 
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 Herewemay 

M)andZC=M 

2-Mand ZC =M, 
ve and currents in the common branch opposite to each other ZA = 

ve but the two currents in the common branch are 

may also be assumed to be the T equivalent of the circuit. 

H and L2= 20 10-3H. 
The coefficient of coupling (K) being 0.75 in the air, find voltage in the second 
coil and the flux of first coil provided the second coils has 500 turns and the 



 

15.66 105sins314t. 

Exp.02 
Find the total inductance

coils.Where the self and mutual inductances 
L1 = 1H, L2 = 2H, L3 = 5H 

M12=0.5H,M23=1H,M13=1H
Solution: 

LA =L1+M12 +M
=1+20.5 +1 
=2.5H 

LB =L2+M23 +M
=2+1+0.5 
=3.5H 

LC =L3+M23 +M
=5+1 + 1 
=7H 

Total inductances are 
Lea =LA+LB+Lc 

=2.5+3.5+7 
=13H(Ans) 

Example03: 
Two identical 750 turn coils A 

changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate 
the mutual inductance of the arrangement .If the self inductance of each coil is 
15mH, calculate the flux produced in coil A per ampere a
this flux which links the turns of B.
Solution:Weknowthat 

now, 
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inductance of the three series connected
coils.Where the self and mutual inductances are 

= 5H 
=1H 

M13 
 

M12 

M13 

Total inductances are 
 
 

Two identical 750 turn coils A and B lie in parallel planes. A current 
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate 
the mutual inductance of the arrangement .If the self inductance of each coil is 
15mH, calculate the flux produced in coil A per ampere and the percentage of 
this flux which links the turns of B. 

Wb/A 
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connected coupled 

and B lie in parallel planes. A current 
changing at the rate of 1500A/s in A induces an emf of 11.25 V in B. Calculate 
the mutual inductance of the arrangement .If the self inductance of each coil is 

nd the percentage of 



 

DirectCurrent
 

(1) D.C. always flow in onedirection 
and whose magnitude remains 
constant. 

(2) 
Highcostofproduction.

(3) 
 

 
(4) 

It is not possible by D.C.Because 
D.C.isdangerous to the 
transformer. 

Itstransmissioncostistoo

 

 
DefinitionofA.C.terms:- 
Cycle:Itisonecompletesetof+veand

360 or 2 radan. 
TimePeriod:Itisdefinedasthetimerequiredtocompleteone
Frequency:Itisdefinedasthereciprocaloftimeperiod.i.e. f=1/

Itisdefinedasthenumberofcyclescompletedper
Amplitude :It is defined as the maximum value of either 

half cycle. 
Phase:Itisdefinedastheangulardisplacementbetweentwohavesis
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A.CFUNDAMENTAL 
Current AlternatingCurrent

 

 

D.C. always flow in onedirection 
and whose magnitude remains 

(1) A.C. is one 
periodically in 

direction and whose magnitude 
undergoes a definite cycle changes 
in definite intervals of time.

production. 
(2) Lowcostofproduction

It is not possible by D.C.Because 
D.C.isdangerous to the 

Itstransmissioncostistoohigh. 

(3) 
 

 
(4) 

ByusingtransformerA.C.voltage 
can be decreased or increased.

A.C.canbetransmittedtoalong 
distance economically.

 
Itisonecompletesetof+veand–vevaluesofalternatingquality 

Itisdefinedasthetimerequiredtocompleteonecycle. 
Itisdefinedasthereciprocaloftimeperiod.i.e. f=1/T 

Or 
Itisdefinedasthenumberofcyclescompletedpersecond. 

It is defined as the maximum value of either +ve half cycle or 

Itisdefinedastheangulardisplacementbetweentwohavesiszero.
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AlternatingCurrent 

 

 which reverse 

direction and whose magnitude 
undergoes a definite cycle changes 
in definite intervals of time. 

production 

ByusingtransformerA.C.voltage 
can be decreased or increased. 

A.C.canbetransmittedtoalong 
distance economically. 

vevaluesofalternatingquality spread over 

+ve half cycle or –ve 

zero. 



 

OR 
Two alternating quantity are inphase 

when each pass through their zero value at 
the same instant and also attain their 
maximum value at the same instant in a 
given cycle. 

 
V=Vmsinwti 
=Im sin wt 

 
PhaseDifference:-Itisdefinedastheangulardisplacementbetweentwo alternating 
quantities. 

If the angular displacement between two waves are not zero, then that is 
known as phase difference. i.e. at 

 

Two quantities are out of phase if they reach their maximum value or 
minimumvalueatdifferenttimesbutalwayshaveanequalphaseanglebetween 

HereV=Vmsinwt 
i=Imsin(wt- )

Inthiscasecurrentlagsvoltagebyanangle‘
PhasorDiagram: 
GenerationofAlternatingemf

Consider a rectangular coil of ‘N” turns, area of cross
placed 
x-axis in an uniform magnetic field of maximum flux density 
coil is rotating in the magnetic field with a velocity of w radian / second. Attime 
t = 0, the coil is in x-axis. After interval of time ‘dt’ second the coil make 
rotating in anti-clockwise direction and makes an angle 
perpendicular component of the magnetic field is 

AccordingtoFaraday’sLawsofelectro
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Two alternating quantity are inphase 
when each pass through their zero value at 
the same instant and also attain their 

he same instant in a 

Itisdefinedastheangulardisplacementbetweentwo alternating 

OR 
If the angular displacement between two waves are not zero, then that is 

known as phase difference. i.e. at a particular time they attain unequal distance.

OR 
Two quantities are out of phase if they reach their maximum value or 

minimumvalueatdifferenttimesbutalwayshaveanequalphaseanglebetween 

) 
Inthiscasecurrentlagsvoltagebyanangle‘ ’. 

GenerationofAlternatingemf:- 
Consider a rectangular coil of ‘N” turns, area of cross-section is ‘A’ nt
 

axis in an uniform magnetic field of maximum flux density Bm web/nt
coil is rotating in the magnetic field with a velocity of w radian / second. Attime 

axis. After interval of time ‘dt’ second the coil make 
clockwise direction and makes an angle ‘ ’ with x

dicular component of the magnetic field is = n cos wt 
AccordingtoFaraday’sLawsofelectro-magneticInduction 
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Itisdefinedastheangulardisplacementbetweentwo alternating 

If the angular displacement between two waves are not zero, then that is 
a particular time they attain unequal distance. 

Two quantities are out of phase if they reach their maximum value or 
minimumvalueatdifferenttimesbutalwayshaveanequalphaseanglebetween them. 

section is ‘A’ nt2 is 
 in 

Bm web/nt2. The 
coil is rotating in the magnetic field with a velocity of w radian / second. Attime 

axis. After interval of time ‘dt’ second the coil make 
’ with x-direction.The 



 


2(Isin 

m 
)

0 
2 

 
 
 
 
 
 
 
 

 
Where 

eN
d
 

d
dt 

N( cos
dt m 

N( mwcoswt

Nw msinwt 

2 fN msinwt(Q
2 fNBmAsinwt 

e Emsin wt 

Em2 fNB

ffrequencyin
BmMaximumfluxdensityin

Nowwhen orwt=90 e = 
Em 

i.e. Em =2 fNBmA 
 

RootMeanSquare(R.M.S)Value
The r.m.s. value of an a.c. is defined by that steady (d.c.) current which 

when flowing through a given circuit
produced by the alternating current when flowing through the same circuit for 
the same time. 

Sinuscdialalternatingcurrentis i 
= Im sin wt = Im sin 
Themeanofsquaresoftheinstantaneousvaluesofcurrentover

completecycle 
2 i2.d  



Thesquarerootofthisvalue




0(2 0) 

2i2.d 

0 2 
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 d )2 

coswt) 

wt) 

Qw2 f) 

wt 

fNBmA 

frequencyin Hz 
MaximumfluxdensityinWb/mt2 

RootMeanSquare(R.M.S)Value:
The r.m.s. value of an a.c. is defined by that steady (d.c.) current which 

when flowing through a given circuit for a given time produces same heat as 
produced by the alternating current when flowing through the same circuit for 

Sinuscdialalternatingcurrentis i 
sin  

Themeanofsquaresoftheinstantaneousvaluesofcurrentover

Thesquarerootofthisvalueis 
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The r.m.s. value of an a.c. is defined by that steady (d.c.) current which 
for a given time produces same heat as 

produced by the alternating current when flowing through the same circuit for 

Themeanofsquaresoftheinstantaneousvaluesofcurrentoverone 



 

m 

2 

I2 

2 

Im.sin

Im 

m 

4 

I22 

0 
2 

I 










 

 









Ir.m.s

 

Im0.707I 

 

 
AverageValue:

The average value of an alternating current is expressed by that steady 
current (d.c.) which transfers across any 
by that alternating current during the sae time.

The equation ofthealternating currentisi= I
i.

Iav





 
 

 


2Im 
av 

0 

π 

1
π 

 

Iav 
2 MaximumCurrent

Hence,Iav0.637

Theaveragevalueoveracompletecycleis

0( 

 m 

2 

I22 

sin2.d
0 

I22 

m 

2 

1cos

Im 
4 

0 

22 
 

 
0 

I2 

1cos

sin

2 
m 

4 

Im 

2 


Imcos

Im 
4 

22 

2 
0 

m 
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.sin 

sin4 
 2 

π 



 d  

The average value of an alternating current is expressed by that steady 
current (d.c.) which transfers across any circuit the same charge as it transferred 
by that alternating current during the sae time. 

The equation ofthealternating currentisi= Imsin  
.d  



d  Imsinθ.dθ 
 

π
0 


Im cos (cos00  

 0 π 

0(1)  

MaximumCurrent 
π 

0.637Im 

Theaveragevalueoveracompletecycleiszero 

( 0) 

d 

cos 2 
d
 

2 

cos2 

sin2 

 

d 

2 

0 

cos 

0

 

65 

Prepared By Er. Sushree Sangeeta Panda 

The average value of an alternating current is expressed by that steady 
circuit the same charge as it transferred 



 

1 

2 

1 

2 

Amplitude factor/ Peak factor/ Crest factor :
maximum value to r.m.s value.

KaMaximumValueIm

R.M.S.Value 
 

Formfactor:-Itisdefinedas theratioofr.m.svaluetoaverage

Kf 
r.m.s.Value 

Average.Value 

Kf=1.11 

PhasororVectorRepresentationofAlternatingQuantity

An alternating current or voltage, (quantity) in a vector quantity whichhas 
magnitude as well as direction. Let the alternating value of current be 
represented by theequation e = E
instant gives the instantaneous value of alternating current. Since the 
instantaneous values are continuously changing, so they are represented by a 
rotating vector or phasor. A phasor is a 
velocity 

Att1,e1Emsinwt1 

Att2,e2Emsinwt2 

AdditionoftwoalternatingCurrent
Lete1Emsinwt 

e2Emsin(wt ) 

The sum of two sine waves of thesame frequency 
is another sine wave of samefrequency but of a 
different maximum value and 

e

PhasorAlgebra:
Avectorquantitycanbeexpressedinterms

(i) RectangularorCartesian
(ii) Trigonometricform 
(iii) Exponentialform 

e2e22ee1 2 
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Amplitude factor/ Peak factor/ Crest factor :- It is defined as the ratio of 
maximum value to r.m.s value. 

m
 Im 

1.414 

 
Itisdefinedas theratioofr.m.svaluetoaveragevalue. 

0.707Im

0.637Im 
1.414 

PhasororVectorRepresentationofAlternatingQuantity:

An alternating current or voltage, (quantity) in a vector quantity whichhas 
magnitude as well as direction. Let the alternating value of current be 

theequation e = Em Sin wt. The projection of Em 
instant gives the instantaneous value of alternating current. Since the 
instantaneous values are continuously changing, so they are represented by a 
rotating vector or phasor. A phasor is a vector rotating at a constant angular 

AdditionoftwoalternatingCurrent:

The sum of two sine waves of thesame frequency 
is another sine wave of samefrequency but of a 
different maximum value and Phase. 

Avectorquantitycanbeexpressedintermsof 
RectangularorCartesianform 

 

2 

2 

2 

eecos  12 
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It is defined as the ratio of 

An alternating current or voltage, (quantity) in a vector quantity whichhas 
magnitude as well as direction. Let the alternating value of current be 

 on Y-axis at any 
instant gives the instantaneous value of alternating current. Since the 
instantaneous values are continuously changing, so they are represented by a 

vector rotating at a constant angular 



 

a

a 

aa 

(iv) Polarform 
 

 
Eajb 

E(cos jsin ) 

Where a = E cos is the active part 
b = E sin isthereactivepart
 tan1b 

Phaseangle
 

j 

1(90o)j2
1(180o) 

j3j(270o) 

j41(360o) 

(i) Rectangularfor:- 
Ea jb 

tan b/a 

(ii) Trigonometricform
EE(cos jsin ) 

(iii) Exponentialform:-

EEe
j
 

(iv) Polarform:- 
EE/ e (E 

AdditionorSubtration:-
E1a1jb1E2

a2jb2 

E1 E2(a1a2) (b1b2 
1b1b2 

 tan 
1 2 

Multiplication:- 
E1 E2(a1ja1) (a1jb2) 

(a1a2b1b2)j(a1a2b1b
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a2b2 

is the active part 
isthereactivepart 

angle 

  

Trigonometricform:- 

- 

 ) 

- 

b2) 
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2 

2 

2 2 2 

E1 

E 

1 a1b2b1a2  
 tan aabb 

 
E1E1 1 

E2E2 2 

E1 E2E1E2 

Division:- 
E1E1 1 

E2E2 2 

12 12 
 
 
 

 

1 2 

E1E1 1 

E2 E2 
1

2 2 

 
A.C.throughPureResistance
LettheresistanceofRohmisconnectedacrosstoA.Csupplyofapplied 

 
 
 
 
 

 
eEmsinwt 

Let‘I’istheinstantaneouscurrent
Heree=iR 

i = e/R 
i=Emsinwt/R 

Bycomparingequation(1)andequation(2)wegetalternatingvoltage and 
current in a pure resistive 

Instantaneouspowerisgivenby P 
= ei 
=Emsin wt.Imsinwt 
=EmImsin2wt 


EmIm.2sin2wt 
2 


Em.

Im.(1cos2wt) 
2 

P
Em.

Im
 

Em.
Im.cos

2 2 2 

i.e.PVm.
Im

 

Vm.
Im.cos2wt

 2 
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   
1 2 

A.C.throughPureResistance:
LettheresistanceofRohmisconnectedacrosstoA.Csupplyofapplied 

 (1) 

Let‘I’istheinstantaneouscurrent. 

 (2) 
Bycomparingequation(1)andequation(2)wegetalternatingvoltage and 

current in a pure resistive circuit are in phase 
Instantaneouspowerisgivenby P 

 

.cos2wt 
 

wt 
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LettheresistanceofRohmisconnectedacrosstoA.Csupplyofapplied voltage 

Bycomparingequation(1)andequation(2)wegetalternatingvoltage and 



 

2 2 

coswt 

w 

WhereVm.
Imiscalledconstantpartof
2 2 

Vm.
Im.cos2wtis calledfluctuatingpartof

 

Thefluctuatingpart 

waves. 

VmIm.cos2
2 

Hencepowerforthewholecycleis
 

 
A.CthroughPureInductance
Letinductanceof‘L’henryisconnectedacrosstheA.C.

 
 

vVmsinwt 

AccordingtoFaraday’slawsofelectromagneticinductancetheemfinduced across 
the inductance 

VL
di

 
dt 

di
istherateofchange ofcurrent

dt 

VsinwtL
di

 
m dt 

diVmsinwtdt
 L 

di
Vmsinwt.dt 

L 
Integratingbothsides, 

di
Vmsinwt.dt 

L 
iVm

L 

PVIwatts 
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2 2 

iscalledconstantpartofpower. 

is calledfluctuatingpartofpower. 

.cos2wt offrequencydoublethatofvoltageand

HencepowerforthewholecycleisP
Vm.

ImV .Irms 

 

A.CthroughPureInductance:
Letinductanceof‘L’henryisconnectedacrosstheA.C.supply 

 (1) 
AccordingtoFaraday’slawsofelectromagneticinductancetheemfinduced across 

current 

rms 
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offrequencydoublethatofvoltageandcurrent 

AccordingtoFaraday’slawsofelectromagneticinductancetheemfinduced across 



 

2 

iVmcoswt 

wL 

i
Vmcoswt 
wV L  

imsinwt


VwL 
msinwt [QX2

XL 2 
MaxiVmum valueof iis 
I  mwhen  

m   sinwt 
XL 2 

Hencetheequationof currentbecomes
So we findthat ifapplied voltage isrep[resented by 
flowing in a purely inductive circuit is given by

iImsin(wt /2) 

Herecurrentlagsvoltagebyanangle

 
Powerfactor = cos 

=cos90
=0 

PowerConsumed= VI cos
=VI 0
=0 

Hence,thepowerconsumedbyapurelyInductivecircuitis
A.C.ThroughPureCapacitance:




Letacapacitanceof ‘C”faradisconnectedacrosstheA.C. supplyof applied 

vVmsinwt 

Let ‘q’=changeonplateswhenp.d.betweentwoplatesofcapacitoris
q =cv 
q=cVmsinwt 

L 
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fLwL] 

 isunity. 

Hencetheequationof currentbecomesiImsin(wt /2) 

So we findthat ifapplied voltage isrep[resented by 
flowing in a purely inductive circuit is given by 

Herecurrentlagsvoltagebyanangle /2Radian. 

vVmsinwt

 
90  

PowerConsumed= VI cos  
0 

Hence,thepowerconsumedbyapurelyInductivecircuitiszero. 
A.C.ThroughPureCapacitance:

Letacapacitanceof ‘C”faradisconnectedacrosstheA.C. supplyof applied 
 (1) 

‘q’=changeonplateswhenp.d.betweentwoplatesofcapacitoris
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wt,thencurrent 

Letacapacitanceof ‘C”faradisconnectedacrosstheA.C. supplyof applied voltage 

‘q’=changeonplateswhenp.d.betweentwoplatesofcapacitoris‘v’ 



 

(IR)2(IX )2 

I R2X 2 
L 

ta 

VIZ 

L 

tan1 
XL 

R 

dq
c 

d
(Vsin wt) dt

 dt m 

i=cVmsinwt 
=wcVmcoswt 
Vm  coswt 

1/wc 

Vmcoswt 
Xc 

in ohm.] 
Imcoswt 

Imsin(wt /2) 

Herecurrentleadsthesupplyvoltagebyanangle
Powerfactor 

Power Consumed= VI cos 

Thepowerconsumedbyapurecapacitivecircuitis
A.C.ThroughR-LSeriesCircuit:



TheresistanceofR-ohmandinductanceofL
A.C. supply of applied voltage

eEmsinwt 

VVRjVL 








tan

 

 

 

V2V2 
R L 
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 [QX11 isknownascapacitive
c wc 2 fc 

Herecurrentleadsthesupplyvoltagebyanangle /2radian. 
 = cos  

= cos 90  =0 
Power Consumed= VI cos  

=VI 0 =0 
Thepowerconsumedbyapurecapacitivecircuitiszero. 

LSeriesCircuit:

ohmandinductanceofL-henryareconnectedinseries across the 
A.C. supply of applied voltage 

1 







XL  
 
 

XL 

(1) 
 
 

 

n1 XL R 

R 
tan1 

R 
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isknownascapacitivereactance 

henryareconnectedinseries across the 



 

WhereZ

RjXLisknownasimpedanceofR

I   
V 

Z 
EmsinwtZ 

IImsin(wt ) 

Herecurrentlagsthesupplyvoltagebyanangle
PowerFactor:Itisthecosineoftheanglebetweenthevoltageand

Itistheratioofactivepowertoapparent

Itistheratioofresistancetoinpedence
Power:

v.i 
Vmsinwt.Imsin(wt ) 

VmImsinwt.sin(wt ) 


1
VI 

 

2mm 


1
VI 

 

2mm 

2sinwt.sin(wt
 
[cos cos2(wt

Obviouslythepowerconsistsoftwo
(i) aconstantpart

1
VIcos

 

2mm 

(ii) apulsatingcomponent

that of the voltage and current.It does not contribute to actual power since 
itsaverage value over a complete cycle is zero.

Henceaveragepower

WhereV&Irepresentsther.m.s
A.C.ThroughR-CSeriesCircuit:
Theresistanceof‘R’-ohmandcapacitanceof‘C’faradisconnectedacross
A.C.supplyofappliedvoltage

R2XL
2 
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2 2 

isknownasimpedanceofR-LseriesCircuit. 

Herecurrentlagsthesupplyvoltagebyanangle . 
Itisthecosineoftheanglebetweenthevoltageandcurrent.

OR 
Itistheratioofactivepowertoapparent power. 

OR 
Itistheratioofresistancetoinpedence. 

 

 

wt ) 

wt)] 

Obviouslythepowerconsistsoftwoparts. 
cos whichcontributestorealpower. 

apulsatingcomponent
1
VIcos(2wt )whichhasafrequencytwice

 

2mm 

that of the voltage and current.It does not contribute to actual power since 
itsaverage value over a complete cycle is zero. 

Henceaveragepowerconsumed 


1
VIcos  

 

2mm 


Vm.

Imcos  

VIcos  

WhereV&Irepresentsther.m.svalue. 
CSeriesCircuit:

ohmandcapacitanceof‘C’faradisconnectedacross
voltage 
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current. 

twice 

that of the voltage and current.It does not contribute to actual power since 

ohmandcapacitanceof‘C’faradisconnectedacrossthe 



 

eEmsinwt --------------------------------
 

VVR(jVC) 

IR(jIXC) 

I(RjXC) 

VIZ 

 

WhereZRjXC

ZRjXC 

 R2XC
2
 

 tan1XC
 

 
VIZ   

I   
V

Z
  

EmsinwtZ

  


Emsin(wt ) 
Z  

IImsin(wt ) 

Herecurrentleadsthesupplyvoltagebyanangle‘
A.C.ThroughR-L-CSeriesCircuit:
Letaresistanceof‘R’-ohminductanceof‘L’henryandacapacitanceof
faradareconnectedacrosstheA.C.supplyinseriesofapplied

 

eEmsinwt 

R 

R2X
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---------------------------------------------------------------------------------------

isknownasimpedanceofR-Cseries

Herecurrentleadsthesupplyvoltagebyanangle‘ ’. 
CSeriesCircuit:
ohminductanceof‘L’henryandacapacitanceof

faradareconnectedacrosstheA.C.supplyinseriesofappliedvoltage 

 (1) 

XC
2
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----------------------- (1) 

 Circuit. 

ohminductanceof‘L’henryandacapacitanceof‘C’ 
 



 

R2(XX L C )
2 

R2(XLXC)

  

eVRVLVC 

VRjVLjVC 

VRj(VLVC) 

IRj(IXLIXC) 

I[Rj(XLXC)] 
I 

 

 
Where 

IZ  

ZI 

Circuit. 
IfXL XC,thentheangleis+ve. If
XC,then the angleis-

Impedanceisdefinedasthephasorsumofresistanceandnet
eIZ 

I e 
IZ 

Z 

(1) If 
(2) If 
(3) If 

XL XC,then P.f willbe 
XL XC,then,P.fwillbe
XLXC,then,thecircuitwillberesistiveone.Thep.f.becomes

andtheresonanceoccurs. 

It is defined as the resonance in electrical circuit having passive or active 
elements represents a particular state when the current and the voltage in the 
circuitismaximumandminimumwithrespecttothemagnitudeofexcitationat a 
particular frequency and the impedances being either minimum or maximum at 
unity power factor 
Resonanceareclassifiedintotwo
(1) SeriesResonance 
(2) ParallelResonance 
(1) SeriesResonance:-
henryandcapacitanceof‘C’faradareconnectedinseriesacrossA.C.
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) 
2 

 tan1 

 
 
 
 
 
 
 

XLXC 

 isknownastheimpedanceofR-L-C

,thentheangleis+ve. IfXL

-ve. 

Impedanceisdefinedasthephasorsumofresistanceandnetreactance

 Emsinwt Isin(wt ) 
 Z

 m
 

,then P.f willbe lagging. 
,then,P.fwillbe leading. 
,then,thecircuitwillberesistiveone.Thep.f.becomes

REASONANCE 
It is defined as the resonance in electrical circuit having passive or active 

elements represents a particular state when the current and the voltage in the 
circuitismaximumandminimumwithrespecttothemagnitudeofexcitationat a 

y and the impedances being either minimum or maximum at 

Resonanceareclassifiedintotwotypes. 

 
- Letaresistanceof‘R’ohm,inductanceof

henryandcapacitanceof‘C’faradareconnectedinseriesacrossA.C.supply

R 
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CSeries 

reactance 

,then,thecircuitwillberesistiveone.Thep.f.becomesunity 

It is defined as the resonance in electrical circuit having passive or active 
elements represents a particular state when the current and the voltage in the 
circuitismaximumandminimumwithrespecttothemagnitudeofexcitationat a 

y and the impedances being either minimum or maximum at 

Letaresistanceof‘R’ohm,inductanceof‘L’ 
supply 



 

o 

eEmsinwt 

Theimpedanceofthecircuit
ZRj(XLXC)] 

Z

Theconditionofseriesresonance:
Theresonancewilloccurwhenthereactivepartofthelinecurrentiszero 
becomes unity. 
The net reactance will be zero. 
The current becomes maximum. 
Atresonancenetreactanceiszero

XLXC0 
XLXC 

WL 
1
 

WoC 

Wo
2LC1 

W2
1

 
 

o LC 

Wo


2 fo


fo

Resonantfrequency

ImpedanceatResonance 
Z0 = R 

CurrentatResonance
I

V
 

 

o R 

Powerfactoratresonance
p.f.

R


R
1 

Zo R 

LC 

R2(XLXC) 
2

LC 

2 LC 

1 

1 

1 
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circuit 

resonance: 
Theresonancewilloccurwhenthereactivepartofthelinecurrentiszero 

The net reactance will be zero. 
The current becomes maximum. 
Atresonancenetreactanceiszero 

Resonantfrequency(f)1
.
1 

 
o 2  

ImpedanceatResonance 

Resonance 

resonance 
 QZR  

o 

 

2 

LC 

75 

Prepared By Er. Sushree Sangeeta Panda 

Theresonancewilloccurwhenthereactivepartofthelinecurrentiszero Thep.f. 



 

ResonanceCurve:- 
 

At low frequency the X
at high frequency the X
circuit. 
Iftheresistancewillbelowthecurvewillbestiff

 If the resistance will go oh increasing the current goes on decreasing and 
the curve become flat.

BandWidth:
At point ‘A’the power lossis 

Thefrequencyisf0whichisat

Atpoint‘B’thepowerlossis

Thepowerlossis50%ofthepowerlossat
 

‘A”/ 
 
 
 

 

correspondingtopoint‘B’isknownashalfpowerfrequencies
f1=Lowerhalfpowerfrequency

f1f0
4 L 

F2=Upperhalfpower frequency

f2f0
4 L 

Band width(B.W.)isdefinedasthedifferencebetweenupperhalfpowerfrequency 
ad lower half power frequency.

B.W.=f2 f1
2 L 

R 

R 

R 
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0 

low frequency the Xc isgreater and the circuit behavesleading and 
at high frequency the XL becomes high and the circuitbehaves lagging 

Iftheresistancewillbelowthecurvewillbestiff(peak). 
If the resistance will go oh increasing the current goes on decreasing and 
the curve become flat. 

At point ‘A’the power lossis I 2R. 
whichisatresonance. 

I2R 
Atpoint‘B’thepowerlossis0 . 

2 
Thepowerlossis50%ofthepowerlossatpoint 

Hencethefrequencies 
correspondingtopoint‘B’isknownashalfpowerfrequenciesf1&f2. 

frequency 

frequency 

Band width(B.W.)isdefinedasthedifferencebetweenupperhalfpowerfrequency 
ad lower half power frequency. 
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isgreater and the circuit behavesleading and 
becomes high and the circuitbehaves lagging 

If the resistance will go oh increasing the current goes on decreasing and 

Hencethefrequencies 

Band width(B.W.)isdefinedasthedifferencebetweenupperhalfpowerfrequency 



 

L2I2
 

Q-factor=
W0L 

R 

Selectivity:
SelectivityisdefinedastheratioofBandwidthtoresonant

Selectivity=B.W.R
 

f0 2 L 

QualityFactor(Q-factor)
It isdefined asthe ratio of2
cycle 

 
Q-factor = 

 


2
1
LI2 

 

2 0 
 

 

I2RT 

 
I2RT 

 L.2I2 
I2RT 

 L.2I2 
I2RT 

2L. 

RT 

 
Qualityfactorisdefinedasthereciprocalofpower

Itisthereciprocalofselectivity.
Q-factorOrMagnification

 

 
Q-factorfactor Voltageacross

Voltageacross

Qfactor= 1. 

cos 

Qualityfactor=
2f0L.

 
R 
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SelectivityisdefinedastheratioofBandwidthtoresonantfrequency

 
Selectivity 

R
 

2 foL 

factor):
It isdefined asthe ratio of2 Maximum energy storedto energy dissipated

1. 
Q f0I 

Qualityfactorisdefinedasthereciprocalofpowerfactor. 

 
selectivity. 

factorOrMagnificationfactor VoltageacrossInductor.
 

Voltage 

I0XL 

I0R 

XL 
R 

across resistor 

2f0LW0LR
 R 

VoltageacrossCapacotor. 
Voltageacrossresistor 

I0Xc 

I0R 
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frequency 

Maximum energy storedto energy dissipated per 



 

Q-factor 1 

W0CR 
 

 

 

Q2W0L 

R 

Q2 
1
 

R2C 

1 
 

 

W0CR 

 

 

GraphicalMethod:
(1) ResistanceisindependentoffrequencyItrepresentsastraight
(2) InductiveReactance 
It is directly proportional to frequency. As the frequency increases , 
XLincreases 
(3) CapacitiveReactanceX

 

It is inversely proportional to frequency. As the frequency increases, 
XCdecreases. 

When frequency increases, X
highervalue. 

Q
1
 L 

R C 

Q 1 
R2C 
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XC 

R 

 
1 

2 f0C 

 

 

 
1 

2 f0CR 

ResistanceisindependentoffrequencyItrepresentsastraightline.
 XL= 2 fL 

It is directly proportional to frequency. As the frequency increases , 

CapacitiveReactanceXC=1 
 

2 fC 

It is inversely proportional to frequency. As the frequency increases, 

When frequency increases, XLincreases and XCdecreasesfromthe 
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line. 

It is directly proportional to frequency. As the frequency increases , 

It is inversely proportional to frequency. As the frequency increases, 

decreasesfromthe 



 

L 

L 

L L C 

C 0

Atacertainfrequency.X
ThatparticularfrequencyisknownasResonant
Variationofcircuitparameterinseries
(2) Parallel Resonance :-
line current is zero. 

 

 

 
At resonance, 
IC–ILsin =0 
ICILsin  

V

XC 
V

XC 

V 

 
V 

R2X2 

sin 

 

1
 XL 

XC R2X2 

R2X2X.X 

Z2X L.X WL

R2XL
2
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0 

 

Atacertainfrequency.XL=XC 
ThatparticularfrequencyisknownasResonantfrequency. 
Variationofcircuitparameterinseriesresonance: 

- Resonance willoccur when the reactive part of the 

sin  

XL 

WL
 1

 
W0C 

R2X2 L 
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Resonance willoccur when the reactive part of the 



 

R2XL
2
 R2XL

L 

0L 

Z2
L

 
C 

R2X2L
 

L C 

R2(2 fL)2L
 

 

0 C 

R24
2
f
2L2L

 
 

0 C 

4 2f
2L2

L
R2 

 

0 

f2
1C 


 L

R2 
 

 

0 4
2
f22 

 

f0

f0=Resonantfrequencyinparallelcircuit. 
Current at Resonance =ILcos

 V . R 

 

  VR 

R2X 2 

VR 
Z2 

VR 
L/C 







 V 

L/RC 
V 

Dynamic Impedence

L/RCDynamicImpedanceofthe
or, dynamic impedances is defined as the impedance at resonance frequency in 
parallel circuit. 
ParallelCircuit:



Theparallelresonancecondition:

C 

1 

2 

1 

LC 


R
2 

L2 
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L
2
 

=Resonantfrequencyinparallelcircuit. 
cos  
 

Impedence 

DynamicImpedanceofthe circuit. 
or, dynamic impedances is defined as the impedance at resonance frequency in 

condition: 
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or, dynamic impedances is defined as the impedance at resonance frequency in 



 

Whenthereactivepartofthelinecurrentiszero. The 
net reactance is zero. 
Thelinecurrentwillbeminimum. 
The power factor will be unity 
Impedance Z1R1jXL 

Z2R2jXC 

AdmittanceY1
1 

 
1

R1jX

  (R1jXL

(R1jXL)(R1jX

R1jXL 
R2X2 

1 L 

Y R1 1 R2X2 

AdmittanceY 

1 L 

1 
1

Z2 R1 

 (R2jX

(R21jXC)(R2

R2jXL 
R2X2 

2 C 

Y R2 
2 R2X2 

2 C 

TotalAdmittanceAdmittance

YY1Y2 
 R1 j 

Y
R2X2 R

1 L 

 R1  

YR2X2 
R2X

1 

At Resonance, 
 XL 

L 2 
 
 

XC 

R2X2 R2X2 
1 L 2 C 

 XL  XC 
R2X2 R2X2 1 L 2 

XR2X2XR2X
L 2 C 2 1 

2 fL R  
2 4 2f2C2 

2 fLR2
2
 

 L 
2 fC2 

1 

Z 

2 
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



Whenthereactivepartofthelinecurrentiszero. The 

Thelinecurrentwillbeminimum. 
The power factor will be unity 

1 

jXL 

L)  

jXL) 

j 
XL 

 R2X2 
 1 L 

1 

 jXC
jXC)  

2 jXC) 

 j 
XC 

 R2X2 
 2 C 

Admittance 1 1 
Z Z 

1 2 

 
XL  R2 j 

XC 

R2X2 R2
2XC2 

 
 

R2X2 
 1 L 2 C 

 R2 XL 

X2j R2X2
 C 1 L 

 0 
 

 

  
  C 

X2
 C 1 L  1 2 2 

  
 

 R4 

2 fC 1 
f2L2

R2 

 1 
2 fC 

2
fL2

C 

XC 

R2X 
2 

2 

C 

1 
Z 
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1 L 

2 L C 

2 fCC 

C 

  
LCR

L
R2 

1 

f
1 

2 

L R2 

LC L  2 
1 

 1 

2 LC 

L 
2  2 

1 
R2 

L 

L 
2fC2 

R2 

 12 fC 
2

fL
C

 1 L
R22 fL

L

1 

L
R2 

4
2
f2LCC 

4
2
f2

1 

LC LCR
1 LCR

f 2  
2 2 

4 LC LCR2 

f

f

fiscalledResonantfrequency.
IfR20 

Thenf





 R2 

 

IfR1andR2=0,then 

 
ComparisonofSeriesandParallelResonantCircuit

f
1
 
2 

1 
LC 


1 

2 LC 

f
1 

2 

L 

L2C 

1 LCR1 
2 

2 L2C 

1 LCR2 

2L 
 1 

C 

  1 

2 

1 

2 

 L

LC LCR

  LCR

L2CLC
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C 

2 

CR2 
1 

2 

 LCR2 

fL2

C 

 2 fLR2 

L
R2 

 2 

 
2 

 1

LCR1 

2 

CR
2
 
2 

CR 
 1 

 

frequency. 

 

ComparisonofSeriesandParallelResonantCircuit:

 1 CR2 

CR2 2 

CR 1  
2 

LC2R 2 2 

2 
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R1
2

R2 1 

1 Z Z 

Item 

 ImpedanceatResonance

 CurrentatResonance 

 EffectiveImpedance 

 P.f.at Resonance 

 ResonantFrequency 

 ItMagnifies 

 Magnificationfactor 






Parallelcircuit:




Z1R1jXL 

Z2R1jXC 

I 
V 


V

 I

V 
1 1 1 

WhereVY 
Z1 

HereY1Admittanceofthe

1 
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XL
2 

 X  
2 

C 
2 

Seriesckt(R-L-C) Parallelckt(R

Resonance Minimum Maximum

V 

Maximum=R Minimum=

R 

Unity 

 1  

2 LC 
1 

2  

Voltage 

WL 

R 

 1 

  2 

  
1 1 1 

Admittanceofthecircuit 
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Parallelckt(R–Land C) 

Maximum 

 V  

Minimum=(L/CR) 

L 

CR 

Unity 

2 

 1R 

 LC L2 

Current 

WL 

R 
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Admittanceisdefinedasthereciprocalofimpedence. 



 

Z2 

I1
2I2

2
 

Z2 21 

R 1 

2 

II1 1I2 2 

IVY 
v
 

1 1 jX 

I 
V

 V 

 
 
 
 

I 2I1I2cos(

 
The resultant current “I” is the vector sum of the branch currents I

I2can be found by using parallelogram low of vectors or resolving I

L 

Prepared By Er. Sushree Sangeeta Panda

1VY2 I2 2 

 

cos( 1 2 ) 

The resultant current “I” is the vector sum of the branch currents I
can be found by using parallelogram low of vectors or resolving I
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The resultant current “I” is the vector sum of the branch currents I1& 
can be found by using parallelogram low of vectors or resolving I2into their X 



 

–andY-components(oractiveandreactivecomponentsrespectively)andthen by 
combining these components.

 
SumofactivecomponentsofI

SumofthereactivecomponentsofI

 
EXP–01: 

A60Hzvoltageof230Veffectivevalueisimpressedonaninductance
0.265H 
(i)  Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero 

axis of the voltage wave be att= 0.
(ii) Showthevoltageandcurrentonaphasor
(iii) Findthemaximumenergystoredinthe
Solution:- 

Vmax 2V

f=60Hz, 

xlwl377 0.265

(i) Thetimeequationforvoltageis

Imax Vmax /xl 230 

90o(lag). 

QCurrentequationis. 

i(t)2.32sin(377t /2)

or 
(ii) Iti 

2.32cos377t 

1 
(iii) orE  LI2

max


max 2 
 
 
 
 
 
 
 
 

 

Example-02: 
The potential difference measured across a coil is 4.5 v, when it carries a 

direct current of 9 A. The same coil when carries an alternating current of 9A at 
25 Hz, the potential difference i
when it is supplied by 50 v, 50 Hz supply.
Solution: 

LetRbethed.c.resistanceandLbeinductanceofthe
RV/I
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2 

components(oractiveandreactivecomponentsrespectively)andthen by 
combining these components. 

SumofactivecomponentsofI1andI2=I1cos 1+I2cos 2 

SumofthereactivecomponentsofI1andI2=I2sin 2-I1sin 1 

A60Hzvoltageof230Veffectivevalueisimpressedonaninductance

Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero 
axis of the voltage wave be att= 0. 
Showthevoltageandcurrentonaphasordiagram. 
Findthemaximumenergystoredintheinductance. 

230V 

 W2 f 2 60377rad/s. 

0.265100  . 

ThetimeequationforvoltageisV(t)2302
sin377t.

 

 /100.2.3 

 

2) 

 1 
0.265  (2.32)21.4J 

 

 2 

The potential difference measured across a coil is 4.5 v, when it carries a 
direct current of 9 A. The same coil when carries an alternating current of 9A at 
25 Hz, the potential difference is 24 v. Find the power and the power factor 
when it is supplied by 50 v, 50 Hz supply. 

LetRbethed.c.resistanceandLbeinductanceofthecoil. 
4.5/90.5  

2 

3 
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components(oractiveandreactivecomponentsrespectively)andthen by 

A60Hzvoltageof230Veffectivevalueisimpressedonaninductanceof 

Writethetimeequationforthevoltageandtheresultingcurrent.Letthe zero 

The potential difference measured across a coil is 4.5 v, when it carries a 
direct current of 9 A. The same coil when carries an alternating current of 9A at 

s 24 v. Find the power and the power factor 



 

Z2R2 

2

Witha.c.currentof25Hz,z=
24
2.66

9 

xl 

xl 

xl 

At50Hz 
xl 

2 25 L 

0.0167  

 
2.62 25.24

Z

5.06  

I=50/5.26 =9.5A 
P=I2/R= 9.52 0.5=45

Example–03: 
A50- fcapacitorisconnectedacrossa230

(a) Thereactanceofferedbythe
(b) Themaximumcurrent
(c) Ther.m.svalueofthecurrentdrawnbythe
Solution: 

(a) x 1 
1 

l wc 2πfe

(c) Since230vrepresentsther.m.s
QIrms230/x

(b) ImIr.m.s  

Example–04: 
In a particularR –L series circuita voltageof 10v at50 Hzproduces a 

current of 700 mA. What are the values of R and L in the circuit ?
Solution: 

(i) Z 



V1z 

10700 103 

R298696L210000/

(ii) Inthesecondcase

Q10500 103 

0.525.24

R2 (2 

R298696

(R298696L2)

R2222066L2
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R2222066L2) 

2 2 

Witha.c.currentof25Hz,z=V/1. 
2.66  

 

2.62  

 

5.24  

0.5=45watt. 

fcapacitorisconnectedacrossa230-v,50–Hzsupply. Calculate
Thereactanceofferedbythecapacitor. 
Themaximumcurrentand 
Ther.m.svalueofthecurrentdrawnbythecapacitor. 

  1 
 

63.6  
fe 2 50 50 106 

Since230vrepresentsther.m.svalue 
xl230/63.63.62A 

 3.62 5.11A 

L series circuita voltageof 10v at50 Hzproduces a 
current of 700 mA. What are the values of R and L in the circuit ?

10/700 103100/7 

10000/49 -------------------------- (I) 
InthesecondcaseZ 

 20 

20 

5.242 

(R298696L2) 

2.6620.52 

 50L)2 

98696L2 

) 

R2 (2 75L)2 

2) 
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Calculate 

L series circuita voltageof 10v at50 Hzproduces a 
current of 700 mA. What are the values of R and L in the circuit ? 



 

R2222066L2
SubtractingEa.(I)from(ii),we

222066L298696

123370L2196

L2


L 

196 
 

123370
196 

123370
SubstitutingthisvalueofLinequation(ii)we

R 6.9 . 

 
Example–04: 

A 20 resistor is connected in series with an inductor, a capacitor and an 
ammeter across a 25 –v, variable frequency supply. When the frequency is 
400Hz, the current is at its Max
across the capacitor is 150v. Calculate
(a) Thecapacitanceofthecapacitor.
(b) Theresistanceandinductanceofthe
Solution: 

Sincecurrentismaximum,thecircuitisin
xlVC/1150/0.5300

(a) xl1/2 fe 3001/2

c1.325 106f1.325

(b) xlxl150/0.5300  

2 400 × L=300 
L = 0.49H 

(c) At resonance, 
Circuitresistance=20+R 

 V/Z = 2510.5 
R = 30  

Exp.-05 
An R-L-C series circuits consists of a resistance of 1000

of 100MH an a capacitance of 
(ii) Thehalfpowerpoints.
Solution: 

1 
i) fo 10

2 101104 
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 400 (II) 
SubtractingEa.(I)from(ii),weget, 

98696L2400(10000/49) 

196 
 

 

123370 
 

0.0398H 
123370 

 

 
= 40mH. 

SubstitutingthisvalueofLinequation(ii)weget R2222066L2(0.398)

connected in series with an inductor, a capacitor and an 
v, variable frequency supply. When the frequency is 

400Hz, the current is at its Maxm value of 0.5 A and the potential difference 
across the capacitor is 150v. Calculate 

capacitor. 
Theresistanceandinductanceoftheinductor. 

Sincecurrentismaximum,thecircuitisinresonance. 
300  

400 c 
1.325 f. 

Circuitresistance=20+R 

C series circuits consists of a resistance of 1000
of 100MH an a capacitance of w f or 10PK 

points. 

106 
2  

159KHz 
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(0.398)2400 

connected in series with an inductor, a capacitor and an 
v, variable frequency supply. When the frequency is 

value of 0.5 A and the potential difference 

, an inductance 



 

LC 

1R 
2 

L2 

1 L 

R C 

1 

2 

 

 
ii) 

 

 
iii) 

ffo
R

 
4 l 

159 10

f foR
 
4 l 

15910

Exp.-06 
Calculatetheimpedanceoftheparallel

14.52 at a frequency of 500 KHz and for band width of 
KHz. The resistance of the coil is 5
Solution: 

At resonance, circuit impedance is L/CR. We have been given the valueof 
R but that of L and C has to be found from the given the value of R but thatof L 
and C has to be found from the g
BWR

,20 1035 
orl

2 l 2 l 

fo
1
 
2  

C=2.6 10-9 
Z=L/CR=39 10-6/2.6 10-9

=3 103  
Example: A coil of resistance 20
a variable capacitor. This combination is series with a resistor of 8000
voltage of the supply is 200V at a frequency of10
i) thevalueofCtogive resonance
ii) the Qofthe coil 
iii) thecurrentineachbranchofthecircuitat
Solution: 

XL=2πfL=2π*106*200*10
Thecoilisnegligibleresistanceincomparisonto

1 

1000 

10
10

1 

2 
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100 

103 
1000

 
4 101 

158.2KHz 

3 
1000

 
4 101 

159.8KHz. 

Calculatetheimpedanceoftheparallel–turnedcircuitasshownin
14.52 at a frequency of 500 KHz and for band width of operation equal to 20 
KHz. The resistance of the coil is 5 . 

At resonance, circuit impedance is L/CR. We have been given the valueof 
R but that of L and C has to be found from the given the value of R but thatof L 
and C has to be found from the given data. 

orl39H 

9 5 

A coil of resistance 20Ω and inductance of 200µH is in parallel with 
a variable capacitor. This combination is series with a resistor of 8000
voltage of the supply is 200V at a frequency of106HZ.Calculate 

resonance 

thecurrentineachbranchofthecircuitatresonance 

 

*200*10-6=1256Ω 
Thecoilisnegligibleresistanceincomparisontoreactance. 

101 

1011 

1 

39106C (39106)2 


52 
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turnedcircuitasshowninfig. 
operation equal to 20 

At resonance, circuit impedance is L/CR. We have been given the valueof 
R but that of L and C has to be found from the given the value of R but thatof L 

Ω and inductance of 200µH is in parallel with 
a variable capacitor. This combination is series with a resistor of 8000Ω.The 

 



 

ii) Q=

iii) dynamicimpedanceofthecircuitZ=L/CR=200*10
12*20)=80000Ω 
totalZ=80000+8000=88000
I=200/88000=2.27mA 
p.d across tuned circuit=2.27*10
3*80000=181.6Vcurrentthroughinductivebranch=

 
=181.6*2π*106*125*10

 
 
 
 

POLY
Three-phasecircuitsconsistsofthreewindingsi.e.

 

 
 

 

EREmsinwtEm 0 

EYEmsin(wt120)Em 120

EBEmsin(wt240)Em 240
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=62.8 

dynamicimpedanceofthecircuitZ=L/CR=200*10-6/(125*10

Z=80000+8000=88000Ω 
 

p.d across tuned circuit=2.27*10-

*80000=181.6Vcurrentthroughinductivebranch=

current through capacitor branch=

*125*10-12=142.7mA 

POLY-PHASECIRCUIT 
phasecircuitsconsistsofthreewindingsi.e.R.Y.B 

120 

240Em 120 
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/(125*10- 

current through capacitor branch=



 

3- Circuitaredividedintotwo
 StarConnection
 DeltaConnection

 

 
StarConnection:




If three similar ends connected at one point, then it is known as star connected 
system. 

The common point is known as neutral point and the wire taken from the 
neutral point is known as Neutral wire.
PhaseVoltage:

Itisthepotentialdifferencebetweenphaseand
LineVoltage:

ItisItisthepotentialdifferencebetweentwo
RelationBetweenPhaseVoltageandLineVoltage
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Circuitaredividedintotwotypes 
Connection 

Connection 

If three similar ends connected at one point, then it is known as star connected 

The common point is known as neutral point and the wire taken from the 
neutral point is known as Neutral wire. 

ItisthepotentialdifferencebetweenphaseandNeutral. 

ItisItisthepotentialdifferencebetweentwophases. 
RelationBetweenPhaseVoltageandLineVoltage:


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If three similar ends connected at one point, then it is known as star connected 

The common point is known as neutral point and the wire taken from the 



 

3 


  

LineVolatageVRYVRNVYNVL






VL








3VPh 

 
 
 
 

 

3VPh 

SinceinabalancedB–phasecircuitV
RelationBetweenLinecurrentandPhaseCurrent

In case of star connection system the leads are connected in series 
witheach phase 

Hencethelinecurrentisequaltophasecurrent I
=Iph 

Powerin3-Phasecircuit:-
PVphIphcos perphase

3VphIphcos for3 phase

3
V

LI 
L 

 
cos (QV

L
 

P 3VLILcos  

Summariesinstarconnection:
i) Thelinevoltagesare
ii) Linevoltagesare aheadoftheirrespectivephase

iii) Theanglebetweenlinecurrentsandthecorrespondinglinevoltageis
iv) Thecurrentinlineandphaseare

 
DeltaConnection:- 

VRNVYN2VRNV
VPhV2

ph2V 
2 

phph V 

2 

3VPh 
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

 



phasecircuitVRN=VYN=VBN=Vph 
RelationBetweenLinecurrentandPhaseCurrent:- 

In case of star connection system the leads are connected in series 

Hencethelinecurrentisequaltophasecurrent IL 

- 
phase 

phase 

 
 
 3V

ph
 

connection: 
apartfromeachother. 

aheadoftheirrespectivephase voltage. 

Theanglebetweenlinecurrentsandthecorrespondinglinevoltageis
Thecurrentinlineandphasearesame. 

VYNCos60o 
 V 

1 

2 
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In case of star connection system the leads are connected in series 

Theanglebetweenlinecurrentsandthecorrespondinglinevoltageis 30+φ 



 

3I 
2 

ph 

If the dissimilar ends of the closed mesh then it is called a Delta 
Connected system 
RelationBetweenLineCurrentandPhaseCurrent

Line Currentinwire – 1=iR

LineCurrentin wire -2=iY

Line Currentinwire–3=iB

 

ILIRIY 
 







 ,IL



RelationBetweenLineVoltage&PhaseVoltage:
VLVph 

Power= 3VLILcos  

Summariesindelta: 

I I 2IRIYcos2 2 
R Y 

I 2I 22I I ph ph phph

 
2

3Iph 
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If the dissimilar ends of the closed mesh then it is called a Delta 

RelationBetweenLineCurrentandPhaseCurrent:- 
 

RiY 
 

iB 
 

iR 

 

RelationBetweenLineVoltage&PhaseVoltage:

cos60 0 

 ph 

1 

2 

2 
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If the dissimilar ends of the closed mesh then it is called a Delta 



 

i) Linecurrentsare apartfromeach

ii) Linecurrentsare behindtherespectivephase
iii) Theanglebetweenthelinecurrentsandcorrespondinglinevoltagesis
MeasurementofPower:

(1) Bysinglewatt-meter
(2) ByTwo-wattmeter
(3) ByThree-wattmeter

MeasurementofpowerByTwoWattMeterMethod

 

PhasorDiagram:- 
LetVR,VY,VBarether.m.svalueof3

currents respectively. 
CurrentinR-phasewhichflowsthroughthecurrentcoilofwatt
IR 

And W2=IY 

Potentialdifference acrossthevoltagecoilof

Assumingtheloadisinductivetypewatt
W1VRBIRcos(30

W1VLILcos(30

WattmeterW2reads 
W2VYBIYcos(30

W2VLILcos(30

W1W2VLILcos(30

VLIL[cos(30

VLIL(2cos30

VLIL(2

W1W2 3V

W1W2VLIL[cos(30
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apartfromeachother. 
behindtherespectivephasecurrent. 

Theanglebetweenthelinecurrentsandcorrespondinglinevoltagesis

metermethod 

wattmeterMethod 
wattmeterMethod 

MeasurementofpowerByTwoWattMeterMethod :- 

arether.m.svalueof3- voltagesandIR,IY,IBarether.m.s. values of the 

phasewhichflowsthroughthecurrentcoilofwatt-

  

Potentialdifference acrossthevoltagecoilofW1VRBVRVB 
  

AndW2VYBVYVB 

Assumingtheloadisinductivetypewatt-meterW1reads. 
cos(30 ) 

cos(30 ) ---------------------------------- (1) 
 

cos(30 ) 

cos(30 ) (2) 
cos(30 )VLILcos(30 ) 

[cos(30 )VLILcos(30 )] 

(2cos30ocos ) 

(2 3cos ) 
2 

VLILcos (3) 
[cos(30 )cos(30 ) 
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Theanglebetweenthelinecurrentsandcorrespondinglinevoltagesis30+φ 

arether.m.s. values of the 

-meter W1 = 

 



 

3 

VLIL(2sin30

VLIL (2

W1W2VLILsin
W1W2VLILsin 

W1W2 3VLILcos

1
tan  

 
tan 



3W1W2  

WW 
1 2

1 

 tan 
3W1W

WW
1 

Variationinwattmeterreadingwithrespectto
 

Pf 

φ=0,cosφ=1 

φ=60,cosφ=0.5 

φ=90,cosφ=0 

 
Exp. :01 

A balanced star – connected load of (8+56). Per phase is connected to a 
balanced 3-phase 100-v supply. Find the cone current power factor, power and 
total volt-amperes. 
Solution: 

Zph

Vph400/ 

10  

23/v 

IphVph/Zph231/1023.1

i) IL=Zph=23.1A 
ii) P.f.=cos =Rph/zph=8/10 =0.8

iii) PowerP 3VLILcos  
 400 23.1 0.8 

=12,800watt. 
iv) Totalvoltamperes=

= 3 400 23.1 
=16,000VA. 

3 

8262 

3 
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(2sin30osin ) 

 (2 
1 

sin ) 
2 

sin  
  

 

 

2 

W2 
W 

 2 

Variationinwattmeterreadingwithrespecttop.f: 

W1reading W2reading

+veequal +veequal

0 +ve 

-ve,equal +veequal

connected load of (8+56). Per phase is connected to a 
v supply. Find the cone current power factor, power and 

 

23.1A 

=8/10 =0.8(lag) 

 

3VLIL 
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reading 

equal 

equal 

connected load of (8+56). Per phase is connected to a 
v supply. Find the cone current power factor, power and 



 

 
 
 

Exp.-02 
Phase voltage and current of a star

25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3
wireand power is measured using two watt meters, find the readings of watt 
meters. Solution : 

Vph = 150V 
VL= 3 150 
Iph = IL = 25A 
Total power = 3 VL

W1 + W2 = 7954.00, cos 
 = cos-1 (0.707) = 45 , tan 45

Nowforalaggingpowerfactor,
tan 

1
3(W1W2)/(W1W2) 

3(W1W2)  

7954 
(W1W2)4592w 

From(i)and(ii)above,we get
W1=6273w 
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Phase voltage and current of a star-connected inductive load is 150V and 
25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3
wireand power is measured using two watt meters, find the readings of watt 

LILcos  = 3 150 3  25 0.707=7954watt.
= 0.707 

, tan 45  =1 
factor, 

get 
 W2=1681w 
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connected inductive load is 150V and 
25A. Power factor of load as 0.707 (Lag). Assuming that the system is 3-
wireand power is measured using two watt meters, find the readings of watt 

watt. 



 

Whenever a network containing energy storage elements such as inductor or capacitor is 
switched from one condition to another,either by change in applied source or change in 
network elements,the response current and voltage change from one state to the oth
state.Thetimetakentochangefromaninitial steadystatetothefinalsteadystateisknown as the 
transient period.This response is known as 
the network after it attains a final steady value is independent of time a
calledthesteady‐stateresponse.Thecompleteresponseofthenetworkisdeterminedwith the 
helpofa differential equation.

STEADYSTATEANDTRANSIENT

In a network containing energy storage elements, with change in excitation, the currents 
and voltages in the circuit change from one state to other state. The behaviour of the 
voltage orcurrent when it is changedfrom one state toanotheris calledthe transient state. 
The time taken for the circuit to change from one steady state to another steady state is 
called the transient time. The application of KVL and KCL to circuits containing energy 
storageelementsresultsindifferential,ratherthanalgebraicequations.whenweconsidera 
circuit containing storage elements which are independent of the sources, the response 
depends upon the nature of the circuit and is called natural response. Storage elements 
deliver their energy to the resistances. Hence, the response changes, gets saturated after 
some time,and is referred to asthe transient response. When we consider a source
on a circuit, the response depends on the nature of the source or sources.This response is 
called forced response. In other words,the complete response of a circuit consists of two 
parts; the forced response and the transient response. When we cons
equation, the complete solution consists of two parts: the complementary function and the 
particularsolution.Thecomplementaryfunctiondiesoutaftershortinterval,andisreferred to as 
the transient response or source free response. The parti
response, or the forced response. The first step in finding the complete solution of a circuit 
is to form a differential equation for the circuit. By obtaining the differentialequation, 
several methods can be used to find

DCRESPONSEOFANR‐LCIRCUIT 

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the 
circuit is initially uncharged and is in series with the resistor.When the switch S is closed 
,we can find the complete solution for the current.Application of kirchoff’s voltage law to 
the circuit results in the following differential equation.
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TRANSIENTS 
Whenever a network containing energy storage elements such as inductor or capacitor is 
switched from one condition to another,either by change in applied source or change in 
network elements,the response current and voltage change from one state to the oth
state.Thetimetakentochangefromaninitial steadystatetothefinalsteadystateisknown as the 

.This response is known as transient response or transients.
the network after it attains a final steady value is independent of time and is

‐stateresponse.Thecompleteresponseofthenetworkisdeterminedwith the 
helpofa differential equation. 

STEADYSTATEANDTRANSIENT RESPONSE 

In a network containing energy storage elements, with change in excitation, the currents 
the circuit change from one state to other state. The behaviour of the 

voltage orcurrent when it is changedfrom one state toanotheris calledthe transient state. 
The time taken for the circuit to change from one steady state to another steady state is 

ed the transient time. The application of KVL and KCL to circuits containing energy 
storageelementsresultsindifferential,ratherthanalgebraicequations.whenweconsidera 
circuit containing storage elements which are independent of the sources, the response 

ends upon the nature of the circuit and is called natural response. Storage elements 
deliver their energy to the resistances. Hence, the response changes, gets saturated after 
some time,and is referred to asthe transient response. When we consider a source
on a circuit, the response depends on the nature of the source or sources.This response is 
called forced response. In other words,the complete response of a circuit consists of two 
parts; the forced response and the transient response. When we consider a differential 
equation, the complete solution consists of two parts: the complementary function and the 
particularsolution.Thecomplementaryfunctiondiesoutaftershortinterval,andisreferred to as 
the transient response or source free response. The particular solution is the steady state 
response, or the forced response. The first step in finding the complete solution of a circuit 
is to form a differential equation for the circuit. By obtaining the differentialequation, 
several methods can be used to find out the complete solution. 

 

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the 
circuit is initially uncharged and is in series with the resistor.When the switch S is closed 

ete solution for the current.Application of kirchoff’s voltage law to 
the circuit results in the following differential equation. 
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Whenever a network containing energy storage elements such as inductor or capacitor is 
switched from one condition to another,either by change in applied source or change in 
network elements,the response current and voltage change from one state to the other 
state.Thetimetakentochangefromaninitial steadystatetothefinalsteadystateisknown as the 

transients.The response of 
nd is 

‐stateresponse.Thecompleteresponseofthenetworkisdeterminedwith the 

In a network containing energy storage elements, with change in excitation, the currents 
the circuit change from one state to other state. The behaviour of the 

voltage orcurrent when it is changedfrom one state toanotheris calledthe transient state. 
The time taken for the circuit to change from one steady state to another steady state is 

ed the transient time. The application of KVL and KCL to circuits containing energy 
storageelementsresultsindifferential,ratherthanalgebraicequations.whenweconsidera 
circuit containing storage elements which are independent of the sources, the response 

ends upon the nature of the circuit and is called natural response. Storage elements 
deliver their energy to the resistances. Hence, the response changes, gets saturated after 
some time,and is referred to asthe transient response. When we consider a source acting 
on a circuit, the response depends on the nature of the source or sources.This response is 
called forced response. In other words,the complete response of a circuit consists of two 

ider a differential 
equation, the complete solution consists of two parts: the complementary function and the 
particularsolution.Thecomplementaryfunctiondiesoutaftershortinterval,andisreferred to as 

cular solution is the steady state 
response, or the forced response. The first step in finding the complete solution of a circuit 
is to form a differential equation for the circuit. By obtaining the differentialequation, 

Consideracircuitconsistingofaresistanceandinductanceasshowninfigure.Theinductor in the 
circuit is initially uncharged and is in series with the resistor.When the switch S is closed 

ete solution for the current.Application of kirchoff’s voltage law to 



 

Figure 1.1 

V = Ri + L  ……………………………………………………………..1.1

Or + i= ................................

Intheabove equation , the currentI is the solution to be found and V is the applied constant 
voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchS isclosed.Theaboveequation is a 
linear differential equation of first order.comparing it with a non
equation 

+ P x = K ................................

whosesolutionis 

X= dt+c ................................

Wherecisanarbitraryconstant.Inasimilarway,wecanwritethecurrentequation

i=c

Hence,i=c +................................
 

To determine the value of c in equation c , we use the initial conditions .In the 
Fig.1.1,theswitchsis closed at t=0.att=0
inductoriszero.Sincetheinductordoesnotallowsuddenchangesincurrents,att=o+ just after the 
switch is closed,the current remains zero.

Thus att=0,i=0 

Substitutingtheaboveconditioninequationc,wehave 0 = 

c +  

Substitutingthevalueofcinequationc,we

i = ‐  
 

i= (1‐ ) 
 

i = (1‐ )(where  

i= (1‐ )( where 
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……………………………………………………………..1.1 

................................................................ 1.2 

Intheabove equation , the currentI is the solution to be found and V is the applied constant 
voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchS isclosed.Theaboveequation is a 
linear differential equation of first order.comparing it with a non‐homogenious differential 

.......................................................................... 1.3 

................................................................. 1.4 

Wherecisanarbitraryconstant.Inasimilarway,wecanwritethecurrentequationas 

dt 

....................................................... 1.5 

To determine the value of c in equation c , we use the initial conditions .In the 
Fig.1.1,theswitchsis closed at t=0.att=0‐,i.e.just beforeclosing theswitchs,thecurrent in the 
inductoriszero.Sincetheinductordoesnotallowsuddenchangesincurrents,att=o+ just after the 
switch is closed,the current remains zero. 

Substitutingtheaboveconditioninequationc,wehave 0 = 

Substitutingthevalueofcinequationc,weget 

 ) ................................................................
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Intheabove equation , the currentI is the solution to be found and V is the applied constant 
voltage.ThevoltageVisappliedtothecircuitonlywhentheswitchS isclosed.Theaboveequation is a 

enious differential 

To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
‐,i.e.just beforeclosing theswitchs,thecurrent in the 

inductoriszero.Sincetheinductordoesnotallowsuddenchangesincurrents,att=o+ just after the 

.................................. 1.6 



 

 
Figure1.2 

 

Equationdconsistsoftwoparts,thesteadystatepart
 

WhenswitchSisclosed ,theresponsereachesasteadystate valueaftera timeintervalas shown in 
figure 1.2. 

Here the transition period isdefined as the timetaken for the current toreach its final or 
stedy state value from its initial value.In 
quantityL/Ris importantindescribingthecurvesinceL/Risthetimeperiodrequired for the 
current to reach its initial value of zero to the final value 

constant of a function 
base of the natural logarithms.The term L/R is called the time constant and is denoted 
by τ . 

So,τ= sec 

 
Hence,thetransientpartofthesolution

i =  =  

AtoneTimeconstant,thetransienttermreaches36.8percentofitsinitial
 

i(τ)=‐  

 
Similarly, 

=‐ =‐0.368

i(2τ)=‐ =‐0.135 

i(3τ)=‐ = ‐0.0498 

i(5τ)=‐ = ‐0.0067 

 
After5TCthetransientpartreachesmorethan99percentofitsfinal 
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Equationdconsistsoftwoparts,thesteadystatepart V/R)and thetransientpart

WhenswitchSisclosed ,theresponsereachesasteadystate valueaftera timeintervalas shown in 

Here the transition period isdefined as the timetaken for the current toreach its final or 
stedy state value from its initial value.In the transient part of the solution, the 
quantityL/Ris importantindescribingthecurvesinceL/Risthetimeperiodrequired for the 
current to reach its initial value of zero to the final value V/R. The time

is thetimeatwhich theexponentofeisunity,wheree is the 
base of the natural logarithms.The term L/R is called the time constant and is denoted 

Hence,thetransientpartofthesolutionis 

AtoneTimeconstant,thetransienttermreaches36.8percentofitsinitial value. 

‐0.368 

 

 

After5TCthetransientpartreachesmorethan99percentofitsfinal value. 
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thetransientpart . 

WhenswitchSisclosed ,theresponsereachesasteadystate valueaftera timeintervalas shown in 

Here the transition period isdefined as the timetaken for the current toreach its final or 
the transient part of the solution, the 

quantityL/Ris importantindescribingthecurvesinceL/Risthetimeperiodrequired for the 
V/R. The time 

theexponentofeisunity,wheree is the 
base of the natural logarithms.The term L/R is called the time constant and is denoted 



 

= (1‐ 

InfigureAwecan findoutthevoltagesandpowersacrosseachelementbyusingthe

Voltageacrosstheresistoris 

=Ri =R

 

Hence, =V (1‐ ) 
 

Similarly,thevoltageacrosstheinductanceis 

L = L =V  

TheresponsesareshowninFigure
 

 

 
Figure1.3 

 

 
Powerintheresistoris 

= i=V(1‐ )

 

Powerintheinductoris 

= i =V

 

= ( ‐ ) 
 

Theresponsesareshowninfigure1.4

Prepared By Er. Sushree Sangeeta Panda

InfigureAwecan findoutthevoltagesandpowersacrosseachelementbyusingthe

(1‐ ) 

Similarly,thevoltageacrosstheinductanceis = 

TheresponsesareshowninFigure1.3. 

) +

 

Theresponsesareshowninfigure1.4. 
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InfigureAwecan findoutthevoltagesandpowersacrosseachelementbyusingthecurrent. 



 

 
Figure1.4 

 
 
 

 
Problem:1.1 

 

Figure1.5

AseriesR‐LcircuitwithR=30Ωand L= 15 Hhasaconstant 
shown inFig.1.5 .determinethecurrent i,thevoltageacrossresistorandacrossinductor. Solution :

ByapplyingKirchoff’svoltageLaw,we

15 +30i =60 

 
+2i=4 

 
Thegeneralsolutionforalineardifferentialequationis i=c

+ dt 

where P=2,K=4 

puttingthe valuesi=c

+ dt 

i=c +2 
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1.5 

Ωand L= 15 Hhasaconstant voltageV=50Vappliedatt=0
shown inFig.1.5 .determinethecurrent i,thevoltageacrossresistorandacrossinductor. Solution :

ByapplyingKirchoff’svoltageLaw,we get 

Thegeneralsolutionforalineardifferentialequationis i=c
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voltageV=50Vappliedatt=0as 
shown inFig.1.5 .determinethecurrent i,thevoltageacrossresistorandacrossinductor. Solution : 



 

Att=0,theswitchs isclosed. 

Sincetheinductorneverallowssudden changein currents.At t=

Therefore at t= , i =0 

0=c+ 2 
 

c =‐ 2 
 

Substitutingthevalueofcinthecurrentequation,we

i=2(1‐ )A 
 

voltageacrossresistor( )=iR=2(1
 

voltageacrossinductor( )= L
 
 
 

 
DCRESPONSEOFANR‐CCIRCUIT

Consideracircuitconsistingofaresistanceand 
circuitisinitiallyunchargedandisinserieswiththeresistor.WhentheswitchSisclosed at t=0 , we can find 
the complete solution for the current.Application of kirchoff’s voltage law to the circuit results in 
the following differential equation.

 

 
Figure1.6 

 

V=Ri+ ……………………………………………………………..1.7

Bydifferentiatingtheaboveequation,we

 
0=R + 

 
i ……………………………………………………1.8

Or 

+ 
 

i=0 

  

 
……………………………………………………1.9
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Sincetheinductorneverallowssudden changein currents.At t= thecurrent in thecircuit is zero. 

Substitutingthevalueofcinthecurrentequation,wehave 

)=iR=2(1‐ )x30=60(1‐ ) v 

=15 2(1‐ )=30 v= 

CIRCUIT 

Consideracircuitconsistingofaresistanceand capacitanceasshowninfigure.The capacitorin the 
circuitisinitiallyunchargedandisinserieswiththeresistor.WhentheswitchSisclosed at t=0 , we can find 
the complete solution for the current.Application of kirchoff’s voltage law to the circuit results in 

lowing differential equation. 

……………………………………………………………..1.7 

Bydifferentiatingtheaboveequation,weget 

……………………………………………………1.8 

……………………………………………………1.9 
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thecurrent in thecircuit is zero. 

capacitanceasshowninfigure.The capacitorin the 
circuitisinitiallyunchargedandisinserieswiththeresistor.WhentheswitchSisclosed at t=0 , we can find 
the complete solution for the current.Application of kirchoff’s voltage law to the circuit results in 



 

Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular solution 
for the above equationis zero. The solution for this type of differential equationis

i=c …………………………………..1.10
 

 
To determine the value of c in equation c , we use 
Fig.theswitchsisclosed att=0.Sincethecapacitordoesnot allow suddenchangesinvoltage,it will act 
as a short circuitat t=o+ just after the switch is closed.

Sothecurrentinthecircuit att=0+is

t = 0,the current i =  

Substitutingtheaboveconditioninequationc,wehave 

Substitutingthevalueofcinequationc,we

i= ………………………………………………1.11

 

 
Figure1.7 

 

 
WhenswitchSisclosed,theresponsedecaysasshowninfigurre. The 

term RCis called the time constant and is denoted

So,τ=RCsec 

After5 TCthecurvereaches99percentofitsfinal

InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage 

across the resistor is 
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Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular solution 
for the above equationis zero. The solution for this type of differential equationis

…………………………………..1.10 

To determine the value of c in equation c , we use the initial conditions .In the circuit shown in 
Fig.theswitchsisclosed att=0.Sincethecapacitordoesnot allow suddenchangesinvoltage,it will act 
as a short circuitat t=o+ just after the switch is closed. 

Sothecurrentinthecircuit att=0+is Thus at 

Substitutingtheaboveconditioninequationc,wehave = c 

Substitutingthevalueofcinequationc,weget 

………………………………………………1.11 

WhenswitchSisclosed,theresponsedecaysasshowninfigurre. The 

term RCis called the time constant and is denoted by τ . 

After5 TCthecurvereaches99percentofitsfinalvalue. 

InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage 
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Equationcisalineardifferentialequationwithonlythecomplementaryfunction.Theparticular solution 
for the above equationis zero. The solution for this type of differential equationis 

the initial conditions .In the circuit shown in 
Fig.theswitchsisclosed att=0.Sincethecapacitordoesnot allow suddenchangesinvoltage,it will act 

InfigureAwecanfindoutthevoltageacrosseachelementbyusingthecurrentequation. Voltage 



 

=Ri =R 

 

Hence, =V  

Similarly,voltageacrossthecapacitoris 

=  

=  
 

=‐ +c 

 

=‐V +c 

Att=0,voltageacrosscapacitoriszero 

So, c = V 

And 
 

= V 

Theresponsesareshownin Figure1.8.

 

 
Figure1.8 

Power in the resistor is 

= i =V  
 

=  

Powerinthecapacitoris 

= i =V (1‐ 
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Similarly,voltageacrossthecapacitoris 

Att=0,voltageacrosscapacitoriszero 

Figure1.8. 
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= ( ‐ ) 

 
Theresponsesareshowninfigure

 

 
Figure1.9 

Problem:1.2 

A series R‐C circuitwithR=10Ωand C=0.1 F has aconstant voltageV=20V appliedatt=0 as shown 
in Fig. determine the current i, the voltage across resistor and acrosscapacitor.

 

 

Figure1.10 

Solution: 

ByapplyingKirchoff’svoltageLaw,we
 

10i + =20 
 

Differentiatingw.r.t.tweget 

10 + =0 

 
+ i= 0 

 
Thesolutionforaboveequation is
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Theresponsesareshowninfigure1.9. 

Ωand C=0.1 F has aconstant voltageV=20V appliedatt=0 as shown 
in Fig. determine the current i, the voltage across resistor and acrosscapacitor.

 

ByapplyingKirchoff’svoltageLaw,we get 

is 
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Ωand C=0.1 F has aconstant voltageV=20V appliedatt=0 as shown 
in Fig. determine the current i, the voltage across resistor and acrosscapacitor. 



 

i=c  
 

Att=0,theswitchsisclosed. 

Sincethecapacitorneverallowssuddenchangeinvoltages.Att=

V/R=20/10 =2 A 

.Thereforeatt=0,i=2A 

the current equation isi=2
 

voltageacrossresistor( )=iR=2
 

 

voltageacrosscapacitor( )= V
 
 
 
 
 

DCRESPONSEOFANR‐L‐CCIRCUIT

Consider a circuit consisting of a resistance, inductance 
capacitorand inductor inthecircuitisinitiallyunchargedandareinserieswiththe resistor.When the 
switch S is closed at t=0 , we can find the complete solution for the current.Application of
kirchoff’svoltagelawtothecircuitresultsinthefollowingdifferential

 

 
Figure1.11 

V=Ri +L + ……………………………………………………………..1.12

Bydifferentiatingtheaboveequation,we

0=R + i= ................................

Or 

+ + i=0 ................................
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Sincethecapacitorneverallowssuddenchangeinvoltages.Att= thecurrent inthecircuit is i = 

 

)=iR=2 x10=20 v 

=20(1‐ )V 

CIRCUIT 

Consider a circuit consisting of a resistance, inductance and capacitance as shown in figure.The 
capacitorand inductor inthecircuitisinitiallyunchargedandareinserieswiththe resistor.When the 
switch S is closed at t=0 , we can find the complete solution for the current.Application of

itresultsinthefollowingdifferential equation. 

 

……………………………………………………………..1.12 

Bydifferentiatingtheaboveequation,weget 

......................................................................... 1.13 

................................................................ 1.14 
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inthecircuit is i = 

and capacitance as shown in figure.The 
capacitorand inductor inthecircuitisinitiallyunchargedandareinserieswiththe resistor.When the 
switch S is closed at t=0 , we can find the complete solution for the current.Application of 



 

The above equation c is a second order linear differential
function.Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationforthis type of 
differential equationis 

+ D+ =0 ................................

Therootsofequation1.15are 

= ‐  

 

Byassuming =‐ and =

and =  

Here maybepositive,negativeorzero

Case I : >  

Then,therootsareReal and Unequaland giveanoverdampedResponseasshowninfigure 

The solution for theaboveequationis:i =
 

 
Figure1.12 

Case II :  

Then,therootsareComplexConjugate,andgiveanunder
figure1.13. 
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The above equation c is a second order linear differential equation with only the complementary 
function.Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationforthis type of 

.......................................................................1.15 

 

maybepositive,negativeorzero. 

 

Then,therootsareReal and Unequaland giveanoverdampedResponseasshowninfigure 

The solution for theaboveequationis:i = +  

Figure1.12 

Then,therootsareComplexConjugate,andgiveanunder‐dampedResponseasshown
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equation with only the complementary 
function.Theparticularsolutionfortheaboveequationiszero.Thecharacteristicsequationforthis type of 

Then,therootsareReal and Unequaland giveanoverdampedResponseasshowninfigure 1.12. 

‐dampedResponseasshownin 



 

Figure1.13 

Thesolutionfortheaboveequationis:i=

Then,therootsareEqualandgiveanCritically
 

 
Figure1.14

Thesolutionfortheaboveequationis:i=

Problem : 1.3 

AseriesR‐L‐CcircuitwithR=20Ω,L=0.05HandC= 20 μFhasaconstantvoltageV=100 
appliedatt=0asshowninFig.determinethetransient currenti

 

Figure1.15
 

 
Solution: 

ByapplyingKirchoff’svoltageLaw,we
 

100=30i0.05  

 
Differentiatingw.r.t.twe get 

 
+20 + i=0
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Thesolutionfortheaboveequationis:i= Case III : 

Then,therootsareEqualandgiveanCritically‐damped Responseasshowninfigure

1.14 

Thesolutionfortheaboveequationis:i=

Ω,L=0.05HandC= 20 μFhasaconstantvoltageV=100 
appliedatt=0asshowninFig.determinethetransient currenti. 

1.15 

ByapplyingKirchoff’svoltageLaw,we get 

 

=0 
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‐damped Responseasshowninfigure1.14. 

Ω,L=0.05HandC= 20 μFhasaconstantvoltageV=100 V 



 

+400 + i=0 

 
+400D+ i=0 

 
Therootsofequationare 

 

= ‐  

 
=‐200

‐200+j979.8 

‐200‐j979.8 
 

Thereforethecurrent 

i =
 

i =
 
 
 

 
Att=0,theswitchs isclosed. 

Sincetheinductor neverallows sudden changein currents.Att=

Therefore at t= , i =0 

i =0 =(1)
 

=0 andi=
 

Differentiatingw.r.t.twe get 
 

 
Att=0,thevoltageacrosstheinductoris100V 

=100 or = 2000 

Att=0, =2000= 
 

= =2.04 
 
 
 

Thecurrentequationis 
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A 

neverallows sudden changein currents.Att= thecurrent in thecircuit is zero. 

 

A 

Att=0,thevoltageacrosstheinductoris100V 
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thecurrent in thecircuit is zero. 



 

i= 
 
 
 
 
 

ANALYSISOFCIRCUITSUSINGLAPLACETRANSFORM
CHNIQUE 

TheLaplace transform is a powerful Analytical Techniquethat is widely used to study the 
behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedo
function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation 
converts the frequency domain function F(s) back to a time domain function f(t).

L{f(t)}=F(s)= f(t)dt ................................

 
{ F(s)} = f(t) =

 
DCRESPONSEOFANR‐LCIRCUIT(LT

Let usdeterminethesolutioniofthefirst order differential equationgivenbyequationAwhich is for 
the DC response of a R‐L Circuit under the zero initial conditioni.e. current is zero, i=0 at t=

and hence i=0at t= in thecircuit in figure A bythe 
current to change as switch is closed at t=0.

 

 
FigureLT1.1 

V=Ri+L ……………………………………………………………..LT

TakingtheLaplaceTransformofbothesideswe

=R I(s) + L [s I(s) –I(0) ]................................

 
=R I(s) + L [ s I(s) ] 

= I(s)[R +L s] 

I(s)= ................................................................
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ANALYSISOFCIRCUITSUSINGLAPLACETRANSFORMTE

TheLaplace transform is a powerful Analytical Techniquethat is widely used to study the 
behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedo
function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation 
converts the frequency domain function F(s) back to a time domain function f(t).

.........................................................................................................

ds .......................................................................................

‐LCIRCUIT(LT Method) 

Let usdeterminethesolutioniofthefirst order differential equationgivenbyequationAwhich is for 
‐L Circuit under the zero initial conditioni.e. current is zero, i=0 at t=

in thecircuit in figure A bythe property of Inductance not allowing the 
current to change as switch is closed at t=0. 

 

……………………………………………………………..LT1.1 

TakingtheLaplaceTransformofbothesidesweget, 

................................................................. LT1.2 

 (I(0)=0:zeroinitialcurrent) 

............................................. LT1.3 
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TE

TheLaplace transform is a powerful Analytical Techniquethat is widely used to study the 
behaviorofLinear,Lumpedparametercircuits.LaplaceTransformconvertsatimedomain 
function f(t) to a frequency domain function F(s) and also Inverse Laplace transformation 
converts the frequency domain function F(s) back to a time domain function f(t). 

......... LT1 

....................... LT2 

Let usdeterminethesolutioniofthefirst order differential equationgivenbyequationAwhich is for 
‐L Circuit under the zero initial conditioni.e. current is zero, i=0 at t=

property of Inductance not allowing the 



 

TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=

i(t)= (DividingthenumeratoranddenominatorbyL

putting weget 
 

i(t)= = (

 
i(t)= ( }(againputtingbackthevalueof

 

i(t)= ( } = (1‐

 

i(t)= (1‐ ) (where

It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechnique issameas that 
obtained by standard differential method .

DCRESPONSEOFANR‐CCIRCUIT(L.T.Method)

Similarly, 

Let usdeterminethesolutioniofthefirst orderdifferential equationgivenbyequationAwhich is for 
the DC response of a R‐C Circuit under the zero initial condition i.e. voltage across capacitor is 
zero, =0att= and hence =0at t=

ofcapacitancenot allowingthevoltageacrossittochangeasswitchisclosedat
 

 
FigureLT1.2 

V=Ri+ ……………………………………………………………..LT

TakingtheLaplaceTransformofbothsideswe

=R I(s) + [ +I (0) ] ................................

=R I(s) + [ ] 

=I(s)[R+ ]=I(s)[ 
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TakingtheLaplaceInverseTransformofbothsidesweget, 

 

(DividingthenumeratoranddenominatorbyL) 

} 

}(againputtingbackthevalueof  

)= (1‐ ) (where  

) ................................................................

It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechnique issameas that 
obtained by standard differential method . 

CIRCUIT(L.T.Method) 

Let usdeterminethesolutioniofthefirst orderdifferential equationgivenbyequationAwhich is for 
‐C Circuit under the zero initial condition i.e. voltage across capacitor is 

=0at t= in thecircuit in figure A bytheproperty

ofcapacitancenot allowingthevoltageacrossittochangeasswitchisclosedatt=0. 

……………………………………………………………..LT1.5 

TakingtheLaplaceTransformofbothsidesweget, 

..................................................... LT1.6 

 (I(0)=0 :zeroinitialcharge) 

 ] 
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........................................LT1.4 

It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechnique issameas that 

Let usdeterminethesolutioniofthefirst orderdifferential equationgivenbyequationAwhich is for 
‐C Circuit under the zero initial condition i.e. voltage across capacitor is 

bytheproperty 

 



 

I(s)= [ ]= ………………………………..LT

TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=

i(t)= (DividingthenumeratoranddenominatorbyRC

putting weget 

 
i(t) = =  

 

i(t)= (puttingbackthevalueof

 

i(t)= (where ………………………………..LT1.8 

i(t)= ) ( where

It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechniquein qis same 
as that obtained by standard differential method in d.

DCRESPONSEOFANR‐L‐CCIRCUIT(L.T.

 

 
FigureLT

Similarly, 

Let us determinethesolution iofthefirst orderdifferential equationgiven byequationA which 
isfortheDCresponseofa R‐L‐CCircuit underthezeroinitial condition i.e.theswitchsisclosed at 
t=0.at t=0‐,i.e. just before closing the switch s , the current in the indu
inductor does not allow sudden changes in currents, at t=o+ just after the switch is closed,the 
current remains zero.alsothevoltageacrosscapacitor iszeroi.e. 

att= inthecircuitinfigurebythepropertyofcapacitancenot allowingthevoltageacross it 
suddenly change as switch is closed at t=0.

 
V=Ri +L ...............................................................

 
TakingtheLaplaceTransformofbothsideswe
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………………………………..LT1.7 

TakingtheLaplaceInverseTransformofbothsidesweget, 

 

(DividingthenumeratoranddenominatorbyRC) 

(puttingbackthevalueof  

………………………………..LT1.8 

RC ) 

It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechniquein qis same 
as that obtained by standard differential method in d. 

‐L‐CCIRCUIT(L.T.Method) 

FigureLT1.3 

Let us determinethesolution iofthefirst orderdifferential equationgiven byequationA which 
‐L‐CCircuit underthezeroinitial condition i.e.theswitchsisclosed at 

‐,i.e. just before closing the switch s , the current in the inductor is zero. Since the 
inductor does not allow sudden changes in currents, at t=o+ just after the switch is closed,the 
current remains zero.alsothevoltageacrosscapacitor iszeroi.e. =0att= andhence 

inthecircuitinfigurebythepropertyofcapacitancenot allowingthevoltageacross it 
suddenly change as switch is closed at t=0. 

............................... LT1.9 

TakingtheLaplaceTransformofbothsidesweget, 
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It canbeobserved that solutionfori(t)asobtainedbyLaplaceTransformtechniquein qis same 

Let us determinethesolution iofthefirst orderdifferential equationgiven byequationA which 
‐L‐CCircuit underthezeroinitial condition i.e.theswitchsisclosed at 

ctor is zero. Since the 
inductor does not allow sudden changes in currents, at t=o+ just after the switch is closed,the 

andhence =0 

inthecircuitinfigurebythepropertyofcapacitancenot allowingthevoltageacross it to 



 

=R I(s) ++ L [ sI(s) –I(0) ]+

 
=R I(s) + [

charge ) 

= I(s)[R +L ] = I(s)[
 

I(s)= [ ] =

TakingtheLaplaceInverseTransformofbothsidesweget, 

I(s)}=

i(t)= (DividingthenumeratoranddenominatorbyLC

i(t) =  

putting = weget 

i(t) =  

Thedenominatorpolynomialbecomes=

where, 

where, = ; = and =

BypartialFractionexpansion,ofI(s)

 

 

I(s)=

TakingtheInverseLaplaceTransform
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I(0) ]+ [ +I (0) ] ......................................................LT1.10 

] ( &I(0)=0:zeroinitial 

] 

 ………………………………..LT1.11 

TakingtheLaplaceInverseTransformofbothsidesweget, 

 

(DividingthenumeratoranddenominatorbyLC) 

weget 

Thedenominatorpolynomialbecomes=  

= =

 

BypartialFractionexpansion,ofI(s), 

I(s)= +  

A= s= 

=  

B= s=  

= =‐  

I(s)= (  

Transform 
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&I(0)=0:zeroinitial 



 

i(t)= +

Where and areconstantstobedeterminedand

Nowdepending uponthevaluesof

When the roots are Real and Unequal, it gives an over

or

+ ) ................................

or 

CASEII:WhentherootsareRealandEqual,itgivesanCritically

=  or 

i(t)= ( + ) fort

CASEIII:WhentherootsareComplexConjugate,itgivesanunder

 
or

+ 

where, =
 

Let  =
 

 
Hence, i(t)=

 

 

i(t) =

 
i(t) =

i(t)=
 

 
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,xxxxxxxxxxxxxxxxx,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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areconstantstobedeterminedand and aren theroots ofthe equation.

Nowdepending uponthevaluesof and ,wehavethreecasesoftheresponse. CASE I : 

When the roots are Real and Unequal, it gives an over‐damped response. 

;Inthiscase,thesolutionisgivenby i(t) =

.............................................................. LT 1.12 

 i(t)= +  fort 0 

CASEII:WhentherootsareRealandEqual,itgivesanCritically‐dampedresponse. 

;Inthiscase,thesolutionisgivenby or 

fort 0 .................................................. LT1.13 

CASEIII:WhentherootsareComplexConjugate,itgivesanunder‐dampedresponse.

;Inthiscase,thesolutionisgivenby i(t) = 

 for t 0 

=  

 =j where j= and =

+ ) 

 

 

………………………………..LT 1.14 

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,xxxxxxxxxxxxxxxxx,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 
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equation. 

,wehavethreecasesoftheresponse. CASE I : 

 

response. 

 



 

TWOPORT
 

Generally, any network may be represented schematically by a rectangular box. A networ
used for representing either Source orLoad , or for a variety of purposes. A pair of terminals at 
whichasignalmayenterorleaveanetworkiscalledaport.Aportisdefinedasanypairof terminals into which 
energy is withdrawn ,or where the network variables m
only one pair of terminals (1‐1’)is shown figure 1.1.

 

 

 

A two‐port network is simply a network a network inside a black box, and the network has only two 
pairsofaccessibleterminals;usuallyoneonepairsrepresentstheinputand theotherrepresentsthe 
output. Such a building block is very common in electronic systems, communication system, 
transmission and distribution system. fig 1.1 shows a two
network,in which the four terminals have been paired into ports 1
togetherconstituteaport.Similarly,theterminals2
nosources in their branches are calledpassive ports 
transformers. Two ports containing source in their branches are called active ports. A voltage and 
currentassigned to each of the two ports. The voltageand current at the input terminals are 

; where as and are entering into the network are 
variable, the other two are indepent variable. The number of possible combinations 
generatedbyfourvariable,takentwoattime,issix.Thus,therearesixpossiblesetsofequations describing 
a two‐port network. 

OPENCIRCUITIMPEDANCE(Z)

Agenerallineartwo‐portnetworkisshownbelowinfigure

Thezparametersofa two‐portnetworkfor thepositivedirectionofvoltagesandcurrents maybe 
definedbyexpressingtheportvoltages
dependentvariables and and are two independent variables.
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TWOPORTNETWORKS 

Generally, any network may be represented schematically by a rectangular box. A networ
used for representing either Source orLoad , or for a variety of purposes. A pair of terminals at 
whichasignalmayenterorleaveanetworkiscalledaport.Aportisdefinedasanypairof terminals into which 
energy is withdrawn ,or where the network variables may be measured .One such network having 

‐1’)is shown figure 1.1. 

Figure1.1 

‐port network is simply a network a network inside a black box, and the network has only two 
pairsofaccessibleterminals;usuallyoneonepairsrepresentstheinputand theotherrepresentsthe 
output. Such a building block is very common in electronic systems, communication system, 
transmission and distribution system. fig 1.1 shows a two‐port network,or two terminal pair
network,in which the four terminals have been paired into ports 1‐1’ and 2‐2’.The terminals 1‐1’ 
togetherconstituteaport.Similarly,theterminals2‐2’constituteanother port.Twoportscontaining 
nosources in their branches are calledpassive ports ; among them are power transmissionlines and 
transformers. Two ports containing source in their branches are called active ports. A voltage and 
currentassigned to each of the two ports. The voltageand current at the input terminals are 

are entering into the network are , ,and , . Two of these are dependent 
variable, the other two are indepent variable. The number of possible combinations 
generatedbyfourvariable,takentwoattime,issix.Thus,therearesixpossiblesetsofequations describing 

OPENCIRCUITIMPEDANCE(Z)PARAMETERS 

‐portnetworkisshownbelowinfigure1.2. 

‐portnetworkfor thepositivedirectionofvoltagesandcurrents maybe 
definedbyexpressingtheportvoltages and intermsofthecurrents and .Here

are two independent variables. 
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Generally, any network may be represented schematically by a rectangular box. A network may be 
used for representing either Source orLoad , or for a variety of purposes. A pair of terminals at 
whichasignalmayenterorleaveanetworkiscalledaport.Aportisdefinedasanypairof terminals into which 

ay be measured .One such network having 

‐port network is simply a network a network inside a black box, and the network has only two 
pairsofaccessibleterminals;usuallyoneonepairsrepresentstheinputand theotherrepresentsthe 
output. Such a building block is very common in electronic systems, communication system, 

terminal pair 
‐1’ and 2‐2’.The terminals 1‐1’ 

‐2’constituteanother port.Twoportscontaining 
; among them are power transmissionlines and 

transformers. Two ports containing source in their branches are called active ports. A voltage and 
currentassigned to each of the two ports. The voltageand current at the input terminals are and 

. Two of these are dependent 
variable, the other two are indepent variable. The number of possible combinations 
generatedbyfourvariable,takentwoattime,issix.Thus,therearesixpossiblesetsofequations describing 

‐portnetworkfor thepositivedirectionofvoltagesandcurrents maybe 
.Here and aretwo 



 

 

Thevoltageatport1‐1’istheresponseproducedbythetwocurrents 

………………………………………………. 

……………………………………………………….. 
 

arethenetworkfunctions,andarecalledimpedance(Z)parameters,andare 
defined by equations1.1 and 1.2 .

Theseparametersalsocanberepresentedby Matrices. We 

may write the matrix equation [V] = [Z][I]

whereVisthecolumnmatrix=[ ] Z is a 

square matrix =  

andwemaywrite inthecolumnmatrix==[ 

] = [ ] 

TheindividualZparametersforagivennetworkcanbedefinedbysettingeachofthe portcurrents 
tozero. suppose port2‐2’ is left open circuited, then 

Thus = where 

 

 
similarly, 

=  

where 

. 
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Figure1.2 

‐1’istheresponseproducedbythetwocurrents and . thus 

………………………………………………. 1.1 

……………………………………………………….. 1.2 

arethenetworkfunctions,andarecalledimpedance(Z)parameters,andare 
defined by equations1.1 and 1.2 . 

Theseparametersalsocanberepresentedby Matrices. We 

may write the matrix equation [V] = [Z][I] 

] Z is a 

inthecolumnmatrix==[ ] Thus,[ 

TheindividualZparametersforagivennetworkcanbedefinedbysettingeachofthe portcurrents 
‐2’ is left open circuited, then =0. 
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arethenetworkfunctions,andarecalledimpedance(Z)parameters,andare 

TheindividualZparametersforagivennetworkcanbedefinedbysettingeachofthe portcurrents equal 



 

Supposeport1‐1’isleftopencircuited,then

Thus, =

where 

 
. 

similarly, 

=  

where 

.Theequivalentcircuitofthetwo‐portnetworksgovernedbytheequations 1.1and 1.2,i.e.open circuit 
impedance parameters as shown below in fig 1.3.

 

 

 
Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

 =  

or 
 

It is observed that all the parameters have the dimensions of impedance. Moreover, individual 
parametersarespecifiedonlywhenthecurrentinone ofthe 
ports being open circuited from which the Z parameters also derive the name open circuit 
impedance parameters. 

Problem1.1 
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‐1’isleftopencircuited,then =0. 

‐portnetworksgovernedbytheequations 1.1and 1.2,i.e.open circuit 
impedance parameters as shown below in fig 1.3. 

Figure1.3 

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

It is observed that all the parameters have the dimensions of impedance. Moreover, individual 
parametersarespecifiedonlywhenthecurrentinone ofthe portsiszero. Thiscorresponds toone of the 
ports being open circuited from which the Z parameters also derive the name open circuit 
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‐portnetworksgovernedbytheequations 1.1and 1.2,i.e.open circuit 

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

It is observed that all the parameters have the dimensions of impedance. Moreover, individual 
portsiszero. Thiscorresponds toone of the 

ports being open circuited from which the Z parameters also derive the name open circuit 



 

FindtheZparametersforthe circuitshowninFigure
 

Figure

SolutionThecircuitintheproblemisaTnetwork.FromEqs16.1and16.2we

When port b‐b’ is open circuited,

= 

 
Where  

 
) 

 
= 

 
Where 

When port a‐a’ is open circuited,

=  

 
where ) 

 
) 

 
=  

 
where and

 
Itcanbeobservedthat , sothenetworkisabilateral 

reciprocity. 

SHORT‐CIRCUITADMITTANCE(Y)
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FindtheZparametersforthe circuitshowninFigure1.4 

Figure1.4 

cuitintheproblemisaTnetwork.FromEqs16.1and16.2wehave 

and

‐b’ is open circuited, 

‐a’ is open circuited, =0 

 

, sothenetworkisabilateral networkwhichsatisfiesthe principle of 

‐CIRCUITADMITTANCE(Y)PARAMETERS 
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networkwhichsatisfiesthe principle of 



 

 

Ageneraltwo‐portnetworkwhichisconsideredinSection16.2isshown inFig16.5The
parameters of a two‐ port for the positive directions of 

expressingtheportcurrents and
and and are independentvariables. 

components, one caused by and the other by

Thus, 

………………………………………………………… 

Similarly,  
 

, and arethenetworknetworkfunctionsandarealsocalledthe
(Y)parameters.TheyaredefinedbyEqs16.3and16.4. Theseparameterscanberepresented by matrices 
as follows 

[I]=[Y][V] 

whereI=[ ];Y=[ ]andV= [

[ ]=[ ][ ] 

 
TheindividualYparametersforagivennetworkcanbedefinedbysettingeachportvoltageto
Ifwelet bezerobyshortcircuitingport2

 

= =0 
 

isthedrivingpointadmittanceatport1
shortcircuitinputadmittance. 

= =0 

isthetransferadmittanceatport1
circuitedforwardtransferadmittance.Ifwelet
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Figure 1.5 

‐portnetworkwhichisconsideredinSection16.2isshown inFig16.5TheY
‐ port for the positive directions of voltages and currents may be defined by 

and intermsofthevoltages and . Here , aredependent 
are independentvariables. may be considered tobe the superpositionof 

and the other by . 

………………………………………………………… 1.3 

 …………………………………………………………1.4 

arethenetworknetworkfunctionsandarealsocalledtheadmittance
(Y)parameters.TheyaredefinedbyEqs16.3and16.4. Theseparameterscanberepresented by matrices 

]andV= [ ] Thus, 

 

TheindividualYparametersforagivennetworkcanbedefinedbysettingeachportvoltageto
bezerobyshortcircuitingport2‐2’then 

isthedrivingpointadmittanceatport1‐1’, withport 2‐2’ short circuited.Itisalsocalledthe

isthetransferadmittanceatport1‐1’, withport 2‐2’ shortcircuited.Itisalsocalledtheshort
circuitedforwardtransferadmittance.Ifwelet bezerobyshortcircuitingport1‐1’,then
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Y 
voltages and currents may be defined by 

aredependent variables 

may be considered tobe the superpositionof two 

admittance 
(Y)parameters.TheyaredefinedbyEqs16.3and16.4. Theseparameterscanberepresented by matrices 

TheindividualYparametersforagivennetworkcanbedefinedbysettingeachportvoltagetozero. 

circuited.Itisalsocalledthe 

‐1’, withport 2‐2’ shortcircuited.Itisalsocalledtheshort 
‐1’,then 



 

= =0 

 
is the transfer admittance atport2

circuitedreversetransferadmittance. 

= =0 

istheshortcircuitdriving pointadmittanceat port 2
calledtheshortcircuited outputadmittance.Theequivalentcircuitofthenetworkgovernedby equation 
1.3 & 1.4 is shown in figure 1.6. 

 

 

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

 =  

or 

=  
 

It is observed that all the parameters have the dimensions of admittance. Moreover, individual 
parametersarespecifiedonlywhenthe voltageinoneofthe portsiszero. Thiscorresponds toone of the 
ports being short circuited from which the Y parameters also derive the name short circuit 
admittance parameters. 

Problem1.2FindtheY‐parametersforthenetworkshownin
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is the transfer admittance atport2‐2’, withport1‐1’shortcircuited. Itis alsocalledthe short
circuitedreversetransferadmittance. 

istheshortcircuitdriving pointadmittanceat port 2‐2’, withport1‐1’ short circuited. Itisalso
outputadmittance.Theequivalentcircuitofthenetworkgovernedby equation 

 

Figure 1.6 

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

parameters have the dimensions of admittance. Moreover, individual 
parametersarespecifiedonlywhenthe voltageinoneofthe portsiszero. Thiscorresponds toone of the 
ports being short circuited from which the Y parameters also derive the name short circuit 

‐parametersforthenetworkshowninFig.1.7 
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‐2’, withport1‐1’shortcircuited. Itis alsocalledthe short 

‐2’, withport1‐1’ short circuited. Itisalso 
outputadmittance.Theequivalentcircuitofthenetworkgovernedby equation 

Ifthenetworkunderstudyisreciprocalorbilateral,theninaccordancewiththereciprocityprinciple 

parameters have the dimensions of admittance. Moreover, individual 
parametersarespecifiedonlywhenthe voltageinoneofthe portsiszero. Thiscorresponds toone of the 
ports being short circuited from which the Y parameters also derive the name short circuit 



 

Fig1.7 

Solution: 

= =0 

 
Whenb‐ isshortcircuited, =0andthenetworklooksasshowninFig.

 
 
 
 

 

=  
 

= 2  
 

So, =  
 

= =0= =  

 

= =0 

 
Whenb‐ isshortcircuited,‐ =

 
so, ‐ =  

 
and = =0=‐  

 
similarly,whenporta‐ isshortcircuited,
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=0andthenetworklooksasshowninFig.1.8(a) 

Fig.1.8(a) 

= 

isshortcircuited, =0andthenetworklooksasshowninFig. 1.8(b)
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1.8(b) 



 

 
= =0 

= where istheequivalentimpedanceasviewedfromb

 

 
=  

 
= =0=  

 
= =0 

 
witha‐ isshortcircuited,‐ = Since , 

=5  

‐ = 5 =  

 
So, = =‐  

 
Thedescribingequationsintermsoftyeadmittanceparameters

 

 

 

 
Transmission(ABCD)parameters
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istheequivalentimpedanceasviewedfromb‐ . = 

Since , 

Thedescribingequationsintermsoftyeadmittanceparametersare 

parameters 
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Figure

Transmission parameters or ABCD parameters are widely used in transmission line theory and 
cascadednetworks.Indescribingthetransmissionparameters,theinputvariables

usually calledthesending end areexpressed intermsof the output variables 
called, the receiving end.The transmission parameters provide a direct relationship between input 
and output.Transmissionpatameters are also called general circuit parameters, or chain 
nparameters. They are defined by

……………………………………………………

…………………………………………………………………………..1.6
 

Thenegativesignisusedwith ,andnotfortheparameterBandD.Boththeportcurrents 
directed to the right, i.e. with a negative sign in equation a and b the currents at port 2
leaves the port is designated as positive.The parameters A,B,C and d are called Transmission 
parameters. In the matrix form, equation a and b are expressed as ,

[ ]= [ ] 

 

Thematrix is called Transmission Matrix.

 
Foragivennetwork,theseparameterscanbedeterminedasfollows.With
i.e. =0;applyingavoltage attheport1

 
A = andC =  

 
hence, = = =0 

 

1/Aiscalledtheopencircuitvoltagegainadimensionlessparameter.And

=0is called open circuit transfer impedance. with port 2
voltage at port 1‐1’ from equn . b we have

 
‐B= and‐D= 
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Figure1.9 

Transmission parameters or ABCD parameters are widely used in transmission line theory and 
cascadednetworks.Indescribingthetransmissionparameters,theinputvariables and

usually calledthesending end areexpressed intermsof the output variables and
called, the receiving end.The transmission parameters provide a direct relationship between input 
and output.Transmissionpatameters are also called general circuit parameters, or chain 
nparameters. They are defined by 

………………………………………………………………………… 1.5 

…………………………………………………………………………..1.6 

,andnotfortheparameterBandD.Boththeportcurrents 
directed to the right, i.e. with a negative sign in equation a and b the currents at port 2

designated as positive.The parameters A,B,C and d are called Transmission 
parameters. In the matrix form, equation a and b are expressed as , 

is called Transmission Matrix. 

Foragivennetwork,theseparameterscanbedeterminedasfollows.Withport2‐2’open
attheport1‐1’,usingequa,wehave 

1/Aiscalledtheopencircuitvoltagegainadimensionlessparameter.And =

=0is called open circuit transfer impedance. with port 2‐2’ short circuited, i.e.  

‐1’ from equn . b we have 
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Transmission parameters or ABCD parameters are widely used in transmission line theory and 
and atport 1‐1’, 

nd at port 2‐2’, 
called, the receiving end.The transmission parameters provide a direct relationship between input 
and output.Transmissionpatameters are also called general circuit parameters, or chain 

,andnotfortheparameterBandD.Boththeportcurrents and‐ are 
directed to the right, i.e. with a negative sign in equation a and b the currents at port 2‐2’ which 

designated as positive.The parameters A,B,C and d are called Transmission 

‐2’opencircuited 

=  

 =0,applying 



 

 

‐ = = =0iscalledshortcircuittransfer

and, 
 
‐ = 

 
 
 

= 

 
 
 

=0iscalledshortcircuitcurrentgainadimensionless

 
Problem1.3 

Findthetransmissionorgeneralcircuitparametersforthecircuitshownin
 

 

 
Solution:FromEquations1.5and1.6,we

 

 

whenb‐b’isopencircuitedi.e. =0,wehave A = 

 

where = and = andhence,A=

=  

 
whenb‐b’isshortcircuitedi.e. =0,wehave B = 

andD =‐  

Inthecircuit,‐ = andso,B=
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=0iscalledshortcircuittransferadmittance 

=0iscalledshortcircuitcurrentgainadimensionlessparameter.

FindthetransmissionorgeneralcircuitparametersforthecircuitshowninFig.1.10 

Fig.1.10 

FromEquations1.5and1.6,wehave 

=0,wehave A = 

andhence,A= C = 

=0,wehave B = ‐ 

B= 
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parameter. 



 

similarly, = and‐ = and 

hence D = 

 

 

Hybridparameters 

Hybridparametersorh‐parametersfindextensiveuseintransistorcircuits.Theyarewell suitedto 
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices 
describeatwo‐portnetwork,whenthevoltageofone portand thecurrentof otherpo
independent variables. Consider the network in figure 1.11.

Ifthevoltageatport1‐1’andcurrentatport2‐2’are takenasdependentvariables,we
expressthemintermsof and . 

 
………………………………………………. 

………………………………………………….1.8
 

Thecoefficientintheabovetermsarecalledhybridparameters.Inmatrixnotation [

[ ] 

 

 

fromequationaandbtheindividualhparametersmaybedefinedbyletting

0,theport 2‐2’ is short circuited. 

Then = =0=shortcircuitinputimpedance. 

=0 = short circuit forward current gain Similarly, 

by letting port 1‐1’ open,  

= =0=opencircuitreversevoltage
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and 

‐parametersfindextensiveuseintransistorcircuits.Theyarewell suitedto 
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices 

‐portnetwork,whenthevoltageofone portand thecurrentof otherpo
independent variables. Consider the network in figure 1.11. 

‐1’andcurrentatport2‐2’are takenasdependentvariables,we
 

………………………………………………. 1.7 

………………………………………………….1.8 

Thecoefficientintheabovetermsarecalledhybridparameters.Inmatrixnotation [ ] =

Figure1.11 

fromequationaandbtheindividualhparametersmaybedefinedbyletting and

 

=0=shortcircuitinputimpedance. = 

short circuit forward current gain Similarly, 

 

=0=opencircuitreversevoltagegain 
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‐parametersfindextensiveuseintransistorcircuits.Theyarewell suitedto 
transistor circuits as these parameters can be most conveniently measured. The hybrid matrices 

‐portnetwork,whenthevoltageofone portand thecurrentof otherportare taken as the 

‐1’andcurrentatport2‐2’are takenasdependentvariables,wecan 

] =

=0. when = 



 

= =0=opencircuitedoutput

 
Since h‐parameters represent dimensionally an impedance, an admittance,a voltage gain and
currentgain,theyarecalledhybridparameters.Anequivalentcircuitofatwo
hybrid parameters is shown below.

 

 
 
 

 
Problem1.4 

Findtheh‐parameters ofthenetworkshowninFig
 

Solution : 

Fromequations1.7and1.8, we

= =0; = =0; =

 
Ifportb‐ isshortcircuited, =0andthenetworklooksasshowninFig.
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=0=opencircuitedoutputadmittance 

‐parameters represent dimensionally an impedance, an admittance,a voltage gain and
currentgain,theyarecalledhybridparameters.Anequivalentcircuitofatwo‐portnetworkin terms of 
hybrid parameters is shown below. 

Figure1.12 

‐parameters ofthenetworkshowninFig1.13. 

Fig.1.13 

Fromequations1.7and1.8, wehave 

= ; = =0 

=0andthenetworklooksasshowninFig.1.14(a) 
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‐parameters represent dimensionally an impedance, an admittance,a voltage gain and a 
‐portnetworkin terms of 



 

 

 
= =0; 

 
istheequivalentimpedanceasviewedfromporta

so, = 2V 

= =2Ω 

 
= =0when =0;‐ = andhence

 
Ifporta‐ isopencircuited,

 

 

= and = 2; = = 

4 ; = 
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Fig.1.14(a) 

istheequivalentimpedanceasviewedfromporta‐ is2Ω 

andhence =‐  

=0andthenetworklooksasshowninFig.1.14(b)then

Fig.1.14(b) 

= 
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then 



 

= =and = 
 

 
INTERRELATIONSHIPSOFDIFFERENT

ExpressionofzparametersintermsofYparametersand

From equations 1.1,1.2,1.3 &1.4 , it is easy to derive the relation between the open circuit 
impedanceparametersandtheshortcircuitadmittanceparametersby meansoftwo matrix 
equationsof the respective parameters. By solving equation a and b for 

= /  ;and =

where  is the determinant of Z matrix

=  

 
= ‐ …………………………………………………………………1.9

 
=‐ + ………………………………………………………………1.10

comparingequations1.9and1.10withequations1.3and1.4we
 

 ; = ‐  

 

= ‐ ; =  

 
Inasimilarmanner,thezparametersmaybeexpressedintermsofthe admittanceparametersby solving 
equations1.3and 1.4 for and

= /  ;and =

where  is the determinant of Y matrix

=  

= ‐ …………………………………………………………………1.11 

+ ………………………………………………………………..1.12

comparingequations1.11and1.12withequations1.1and1.2we
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 =0= 

INTERRELATIONSHIPSOFDIFFERENTPARAMETERS 

ExpressionofzparametersintermsofYparametersandvice‐versa 

From equations 1.1,1.2,1.3 &1.4 , it is easy to derive the relation between the open circuit 
impedanceparametersandtheshortcircuitadmittanceparametersby meansoftwo matrix 
equationsof the respective parameters. By solving equation a and b for and , we get

/

is the determinant of Z matrix 

…………………………………………………………………1.9 

………………………………………………………………1.10 

comparingequations1.9and1.10withequations1.3and1.4wehave 

Inasimilarmanner,thezparametersmaybeexpressedintermsofthe admittanceparametersby solving 
 

/

is the determinant of Y matrix 

…………………………………………………………………1.11 =‐

………………………………………………………………..1.12 

comparingequations1.11and1.12withequations1.1and1.2wehave 
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From equations 1.1,1.2,1.3 &1.4 , it is easy to derive the relation between the open circuit 
impedanceparametersandtheshortcircuitadmittanceparametersby meansoftwo matrix 

, we get 

Inasimilarmanner,thezparametersmaybeexpressedintermsofthe admittanceparametersby solving 



 

 ; = ‐  

 
= ‐ ; = 

 
GeneralCircuitParametersor ABCD Parameters inTermsofZparametersand Y 
Parameters 

Weknow that 
 
 

; 
 

;
 

A = ;C =  

Substitutingthecondition =0inequations1.1and1.2weget 

=  

 
Substitutingthecondition =0inequations1.4weget

 

 

A = =  

Substitutingthecondition =0inequations1.2weget C = 

=  

 
Substitutingthecondition =0inequation1.3and1.4andsolvingfor 

the determinant of the admittance matrix

= =C 

Substitutingthecondition =0inequations1.4,weget 

 = ‐  = B 

 
Substitutingthecondition =0inequation1.1and1.2andsolvingfor 

the determinant of theimpedance matrix
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GeneralCircuitParametersor ABCD Parameters inTermsofZparametersand Y 

;  

 ;  

 ; B =‐ ;D =‐  

=0inequations1.1and1.2weget A = 

=0inequations1.4weget, 

=0inequations1.2weget C = 

=0inequation1.3and1.4andsolvingfor gives Where

the determinant of the admittance matrix 

=0inequations1.4,weget 

=0inequation1.1and1.2andsolvingfor gives Where

the determinant of theimpedance matrix 
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GeneralCircuitParametersor ABCD Parameters inTermsofZparametersand Y 

Where is 

Where is 



 

‐  = =B 

Substitutingthecondition =0inequation1.2weget,

 = = D 

 
Substitutingthecondition =0inequations1.3and1.4 we get

=  =D 
 

 

 
A two‐port network with any number of elementsmay be converted into a two‐port three‐ 
element network. Thus, a two
network,i.e.threeimpedances areconnectedtogetherintheformofa Tasshowninfigure 

 

 

 

ItispossibletoexpresstheelementsoftheT
parametersasexplainedbelow.

Zparametersofthe network
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=0inequation1.2weget,

=0inequations1.3and1.4 we get 

T andrepresentation 

‐port network with any number of elementsmay be converted into a two‐port three‐ 
element network. Thus, a two‐port network may be represented by an equivalent T‐ 
network,i.e.threeimpedances areconnectedtogetherintheformofa Tasshowninfigure 

Figure1.15 

ItispossibletoexpresstheelementsoftheT‐networkintermofZ parameters,or
below. 

network 

= = 0 =  

= =0 =  
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‐port network with any number of elementsmay be converted into a two‐port three‐ 
‐port network may be represented by an equivalent T‐ 

network,i.e.threeimpedances areconnectedtogetherintheformofa Tasshowninfigure 1.15. 

‐networkintermofZ parameters,orABCD 



 

 

 
Fromtheaboverelations,itisclear

‐ 

‐ 

‐  

ABCDparametersofthe network

A= =0 =  

 
B= =0 

When2‐ isshortcircuited 
 

=  

 
B = +  

 
C = =0 =  

 
D= =0 

When2‐ isshortcircuited 
 

= D 

=  

Fromtheaboverelationswecanobtain 

= ; = ; =  

 
Problem:1.6 
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= =0 =  

= =0 =  

Fromtheaboverelations,itisclearthat 

network 

Fromtheaboverelationswecanobtain 
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TheZparametersofaTwo‐portnetworkare

FindtheequivalentTnetworkandABCDParameters. 

Solution : 

TheequivalentTnetworkisshowninFigure1.16 where

= ‐ = 5Ω 

= ‐ = 10Ω 

and =5Ω 

TheABCDparametersofthenetworkare A = 

+1 =2 ; B =( )+ = 25 Ω

C= =0.02;D =1 =3 

 
In a similar way a two‐port network may be represented by an equivalent ‐ network, i.e. 

three impedances or admittances are connected together in the form of as shown in Fig 

1.17. 
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‐portnetworkare , = =5Ω.

FindtheequivalentTnetworkandABCDParameters. 

TheequivalentTnetworkisshowninFigure1.16 where

TheABCDparametersofthenetworkare A = 

= 25 Ω 

‐port network may be represented by an equivalent ‐ network, i.e. 

three impedances or admittances are connected together in the form of as shown in Fig 
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=5Ω. 

‐port network may be represented by an equivalent ‐ network, i.e. 

three impedances or admittances are connected together in the form of as shown in Fig 



 

Fig.1.16 

Itispossibletoexpresstheelementsofthe

parametersasexplainedbelow.

Y‐parametersofthenetwork 
 
 

 
= =0 = + 

= =0 =‐  

= =0 = + 

= =0 =‐  

 
Fromtheaboverelations,itisclearthat 

+  

=‐  
 

= +  
 

WritingABCDparametersintermsofYparametersyieldsthefollowing

A =  

 
B = =  

 
C = = + +  

 
D = =  

 
fromtheaboveresults,weobtain 

= ; = ; =

 

………………………………………………………xxxxxxxxxxxxxxxxxxxx……………………………………….
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Itispossibletoexpresstheelementsofthe ‐networkintermsofYparametersor 

below. 

Fromtheaboverelations,itisclearthat =

WritingABCDparametersintermsofYparametersyieldsthefollowingresults. 

 

………………………………………………………xxxxxxxxxxxxxxxxxxxx……………………………………….

133 

Prepared By Er. Sushree Sangeeta Panda 

 Fig.1.17 

‐networkintermsofYparametersor ABCD 

………………………………………………………xxxxxxxxxxxxxxxxxxxx………………………………………. 
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CLASSIFICATIONOFFILTERS 
 

Afilterisareactivenetworkthatfreely passesthedesiredbandoffrequencieswhilealmost totally 
suppressing all other bands. A filter is constructed from purely reactive elements, for otherwise the 
attenuation would never becomeszero i n the pass band of thefilter network. 
Filters differ from simple resonant circuit in providing a substantially constant transmission 
over the band which they accept; this band may lie between any limits depending on the 
design. Ideally, filters should produce no attenuation in the desired band, called the 
transmissionbandorpassband,andshould providetotal orinfiniteattenuationatallother 
frequencies, called attenuation band or stop band. The frequency which separates the 
transmissionbandandtheattenuationbandisdefinedasthecut‐offfrequency ofthewave filters, 
and is designated by fc 

Filter networks are widely used in communication systems to separate various voice 
channels in carrier frequency telephone circuits. Filters also find applications in instrumentation, 
telemetering equipment etc. where it is necessary to transmit or attenuate a limited range of 
frequencies. A filter may, in principle, have any number of pass bands separated by attenuation 
bands.However,theyareclassifiedintofourcommontypes,viz.lowpass,highpass,bandpassand band 
elimination. 

Decibelandneper 

The attenuation of a wave filter can be expressed in decibels or nepers.Neper is defined as the 
naturallogarithmoftheratioof inputvoltage(or current)to the outputvoltage(orcurrent),provide that 
the network is properly terminated in its characteristic impedance Z0. 

 

Fig.9.1(a) 
 

From fig. 9.1 (a) the number of nepers, N= log e [V1/V2]or loge [I1/I2]. A neper can also be 
expressed in terms of input power,P1and the output power P2as N=1/2 logeP1/P2. A decibel is 
definedastentimesthecommonlogarithmsoftheratiooftheinputpowertotheoutputpower. 

DecibelD=10log10P1/P2 
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Thedecibelcanbeexpressedintermsof theratioof inputvoltage(orcurrent) andthe output 
voltage (or current.) 

D=20log10[V1/V2]=20log10[I1/I2] 

*Onedecibelisequalto0.115 N. 

LowPassFilter 

Bydefinitionalowpass(LP)filterisonewhichpasseswithoutattenuationallfrequencies up to the 
cut‐off frequency fc, and attenuates all otherfrequenciesgreaterthanfc.The attenuation 
characteristic of an ideal LP filter is shown in fig.9.1(b).This transmits currents of all frequencies 
from zero up to the cut‐off frequency. The band is called pass band or transmission band.Thus,the 
pass bandfortheLP filter is thefrequencyrange0 to fc.Thefrequencyrange 
overwhichtransmissiondoesnottakeplaceiscalledthestopband orattenuationband. Thestop band 
for a LP filter is the frequency range above fc. 

 

Fig.9.1(b) 

HighPassFilter 

A high pass (HP) filter attenuates all frequencies belowa designated cut‐off frequency, fc, and 
passesallfrequenciesabovefc.Thusthepassbandof thisfilteristhefrequencyrangeabove fc,and thestop 
bandisthefrequencyrangebelow fc. Theattenuationcharacteristicof aHP filterisshown in fig.9.1 (b). 

BandPassFilter 
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A band pass filter passes frequencies between two designated cut‐off frequencies and 
attenuatesallotherfrequencies.ItisabbreviatedasBPfilter.Asshowninfig.9.1(b),aBPfilterhas 
twocut‐offfrequenciesandwillhavethepassband f2–f1;f1iscalledthelowercut–off frequency, while f2is 
called the upper cut‐off frequency. 

BandEliminationfilter 

Abandeliminationfilterpassesallfrequencieslyingoutsideacertain range,whileitattenuates all 
frequencies between the two designated frequencies. It is also referred as band stop filter. The 
characteristic of an ideal band elimination filter is shown in fig.9.1 (b).All frequencies between 
f1andf2will be attenuatedwhilefrequencies below f1andabovef2will be passed. 

FILTERNETWORKS 
 

Ideally a filter should have zero attenuation in the pass band. This condition can only be 
satisfied if the elements of the filter are dissipationless.which cannot be realized in practice. Filters 
aredesignedwithanassumptionthattheelementsof thefiltersarepurelyreactive.Filtersaremade of 
symmetrical T, or πsection. Tand π section can be considered as combination of unsymmetrical L 
sections as shown in Fig.9.2. 

 

Fig. 9.2 

The ladder structure is one of the commonest forms of filter network. A cascade 
connection ofseveralTand πsections constitutesaladdernetwork.Acommonformofthe ladder 
network is shown in Fig.9.3. 

Figure9.3(a)representsaTsectionladdernetwork,whereasFig.9.3(b)representstheπ section 
laddernetwork.Itcanbeobservedthatbothnetworksareidenticalexceptattheends. 
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Fig. 9.3 

EQUATIONSOFFILTERNETWORKS 
 

ThestudyofthebehaviorofanyfilterrequiresthecalculationofitspropagationconstantУ, 
attenuationα,phaseshiftβ anditscharacteristicimpedanceZ0. 

T‐Network 

ConsiderasymmetricalT‐networkasshowninFig. 9.4. 
 

Fig.9.4 

If the image impedances at port 1‐1' and port 2‐2' are equal to each other ,the image 
impedanceisthencalledthecharacteristic,ortheiterativeimpedance,Z0.Thus,ifthenetworkin Fig.9.4is 
terminated inZ 0,its inputimpedance will alsobe Z 0. The value of input impedance for the T‐network 
when it is terminated inZ0 is given by 
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ThecharacteristicimpedanceofasymmetricalT‐sectionis 
 

(9.1) 

Z0Tcanalsobeexpressedintermsofopen circuitimpedanceZ0Candshortcircuitimpedance Z SC of 
the T – network . From Fig. 9.4, the open circuit impedance Z 0C= Z1/2 + Z 2and 

 

(9.2) 

PropagationConstantofT‐Network 

BydefinitationthepropagationconstantУofthenetworkinFig.9.5isgivenbyУ=logeI1/I2 
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Writingthemeshequationforthe2ndmesh,we get 
 

Fig.9.5 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(9.3) 

ThecharacteristicimpedanceofaT–networkisgivenby 
 
 
 

 
(9.4) 

SquaringEsq.9.3and9.4andsubtractingEq.9.4fromEq.9.3,weget 
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Rearrangingtheaboveequation,wehave 

 

Dividingbothsidesby2,we have 
 

 

(9.5) 

Stillanotherexpressionmayobtainedforthecomplexpropagationconstantintermsof 
thehyperbolic tangent rather than hyperbolic cosine. 
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(9.6) 

DividingEq.9.6byEq.9.5,Weget 
 

 

AlsofromEq. 9.2, 
 
 
 
 
 
 
 
 

 
(9.7) 

π– Network 

Considerasymmetricalπ–sectionshowninFig.9.6.WhenthenetworkisterminatedinZ0atport2 
–2‘,itsinputimpedanceisgivenby 

 

Fig.9.6 
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(9.8) 
 

FromEq.9.1 
 

(9.9) 
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Z0πcanbeexpressedintermsof theopen circuitimpedanceZ 0Candshortcircuitimpedance Z SCof 
the π network shown in Fig.9.6 exclusive of the load Z 0 . 

FromFig.9.6,theinputimpedanceatport1‐1’whenport2– 2’isopenisgiven by 
 

Similarly,theinputimpedanceatport1–1’whenport2–2’isshortcircuitisgivenby 
 

 

ThusfromEq.9.8 
 

(9.10) 

PropagationConstantofπ–Network 

Thepropagationconstantofasymmetricalπ–section isthesameasthatforasymmetricalT– 
Section. 

 

CLASSIFICATION OFPASSBAND 
AND STOP BAND 

 

Itispossibletoverifythecharacteristicsoffiltersfrom thepropagationconstantofthe network.The 
propagation constant У, being a function of frequency, the pass band, stop band and the cut‐off 
point,i.e.thepointofseparationbetweenthe twobands,canbeidentified.ForsymmetricalTorπ – section, 
the expression for propagation constant У in terms of the hyperbolic functions is given by Eqs 9.5 
and 9.7 in section 9.3. From Eq.9.7, sin h У/2 = √(Z 1/4Z2) . 

IfZ1andZ2arebothpureimaginaryvalues,theirratio,andhenceZ1/4Z2,willbeapurereal number. 
SinceZ1and Z2may be anywhere in the range from ‐jαto +jα, Z1/ 4Z2may also have any 
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realvaluebetweentheinfinitelimits.ThensinhУ/2= √Z 1/√4Z2willalsohaveinfinitelimits,but may be 
either real or imaginary depending upon whether Z1/ 4Z2is positive or negative. 

Weknowthat thepropagationconstant isacomplexfunctionУ =α+jβ, the real partof the 
complexpropagationconstantα,isameasureofthe changeinmagnitudeofthecurrentor voltage in the 
network ,known as the attenuation constant . β is a measure of the difference in phase 
betweentheinputandoutputcurrentsorvoltages.KnownasphaseshiftconstantThereforeαandβ 
takeondifferentvaluesdependingupontheofZ1/4Z2.FromEq.9.7,Wehave 

 

(9.11) 

CaseA 

IfZ1andZ2arethesametypeofreactances,then[Z1/4Z2]isrealandequaltosayα+x. 

TheimaginarypartoftheEq.9.11mustbezero. 
 

(9.12) 
 

(9.13) 

αandβmustsatisfyboththeabove equations. 

Equation9.12canbesatisfiedifβ/2=0ornπ,wheren=0,1,2,…..,thencosβ/2=1andsinhα/2=x 
=√(Z1/4Z2) 

 

 
Thatxshouldbealwayspositiveimplies that 

 

(9.14) 
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Sinceα≠0,itindicatesthattheattenuationexists. 

CaseB 

ConsiderthecaseofZ1andZ2beingoppositetypeofreactances,i.e. Z1/4Z2isnegative, making √ Z1/ 
4Z2imaginary and equal to say Jx 

*TherealpartoftheEq.9.11mustbezero. 
 

(9.15) 
 

(9.16) 

Boththeequationsmustbesatisfiedsimultaneouslybyαandβ.Equation 9.15 maybesatisfied when α = 
0, or when β = π. These conditions are considered separately hereunder 

(i) Whenα=0;fromEq.9.15, sinhα/2=0.andfromEq.9.16sinβ/2= x=√(Z1/4Z2).Butthe 
sinecanhave a maximum value of 1. Therefore, the above solutionis valid only for negativeZ1/ 4Z2 

,andhavingmaximumvalueofunity.Itindicatestheconditionofpassbandwithzeroattenuation and 
follows the condition as 

 
 
 

 
(9.17) 

(ii) Whenβ=π,fromEq.9.15,cosβ/2=0.AndfromEq.9.16,sinβ/2=±1;coshα/2=x=√(Z1/4Z2) 
. 

Sincecoshα/2≥ 1,thissolutionisvalidfornegativeZ1/4Z2,andhavingmagnitude greater 
than, or equal to unity. It indicates the condition of stop band since α ≠ 0. 

 
 
 

 
(9.18) 

It can be observed that there are three limits for case A and B. Knowing the values of 
Z1and Z2, it is possible to determine the case to be applied to the filter. Z1and Z2are made of 
different types of reactances, or combinations of reactances, so that, as the frequency changes, a 
filtermaypassfromonecasetoanother.CaseAand(ii)incaseBareattenuation bands,whereas(i) in case B 
is the transmission band. 
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Thefrequencywhichseparatestheattenuationbandfrompassbandorviceversais 
called cut‐off frequency. The cut‐off frequency is denoted by fC, and is also termed as nominal 
frequency.SinceZ0isrealinthepassbandandimaginaryinanattenuationband, fCisthefrequency at which 
Z0changes from being real to being imaginary. These frequencies occur at 

 
9.18(a) 

 

 
9.18(b) 

Theaboveconditionscanberepresentedgraphically,asinFig.9.7. 
 

Fig. 9.7 

CHARACTERISTIC IMPEDANCEIN 
THE PASS AND STOP BANDS 

 

ReferringtothecharacteristicimpedanceofasymmetricalT‐network,fromEq.9.1We have 
 

IfZ1andZ2arepurelyreactive,letZ1=jx1andZ2=jx2,then 
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(9.19) 

Apassbandexistswhenx1andx2areofoppositereactancesand 
 

Substituting these conditions in Eq. 9.19, we find that ZOTis positive and real. Now consider 
thestop band.Astopbandexistswhen x1andx2are of thesametypeofreactances; thenx1/4x2>0. 
Substituting these conditions in Eq. 9.19, we find that ZOTis purley imaginary in this attenuation 
region.Another stopbandexists when x1andx 2are of the same type of reactances, butwithx1/4x2 

<‐1.ThenfromEq.9.19,ZOTisagainpurlyimaginaryintheattenuationregion. 

Thus, in a pass band if a network is terminated in a pure resistance RO(ZOT= RO), the input 
impedanceisROandthenetwork transmitsthepower receivedfromthesourcetotheROwithout any 
attenuation. In a stop band ZOTis reactive. Therefore, if the network is terminated in a pure 
reactance ( ZO= pure reactance), the input impedance is reactive, and cannot receive or transmit 
power. However, the network transmits voltage and current with 900 phase difference and with 
attenuation.Ithasalreadybeenshownthatthecharacteristicsimpedanceofasymmetricalπ‐ 
sectioncanbeexpressedintermsofT.Thus,fromEq.9.9,Z0π=Z1Z2/Z0T. 

SinceZ1andZ2arepurelyreactive,Z0πisreal, ifZOTisreal andZ0xisimaginaryifZOTis imaginary. Thus 
the conditions developed for T – section are valid for π – sections. 

CONSTANT–KLOWPASSFILTER 
 

Anetwork,eitherTorπ,issaidtobe oftheconstant– ktypeifZ1andZ2ofthenetworksatisfythe relation 

Z1Z2= k2 
(9.20) 

Where Z1and Z2are impedances in the T and π sections as shown in Fig.9.8.Equation 9.20 states 
that Z1and Z2are inverse if their product is a constant, independent of frequency. K is a real 
constantthatistheresistance.kisoften termedasdesignimpedanceornominalimpedanceofthe 
constant k – filter. 
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Theconstantk,Torπtypefilterisalsoknownasthe prototypebecauseothermorecomplex network can be 
derived from it. A prototype T and π – section are shown in 

 

Fig.9.8 

Fig.9.8(a)and(b),where Z1=jωLandZ2=1/jωC. HenceZ1Z2=L/C=k2whichis independent of 
frequency. 

 

(9.21) 

SincetheproductZ1andZ2isconstant,thefilterisaconstant–ktype.FromEq.9.18(a)the 
cut‐offfrequenciesareZ1/4Z2= 0, 

 

(9.22) 

The pass band can be determined graphically. The reactances of Z1and 4Z2will vary with 
frequencyasdrawninFig.9.9.Thecut‐offfrequencyat theintersectionof thecurves Z1and‐4z2is indicated 
as fC. On the X – axis as Z1= ‐4Z2at cut‐off frequency, the pass band lies between the frequencies at 
which Z1= 0, and Z1= ‐ 4Z2. 
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Fig.9.9 

AllthefrequenciesabovefClieinastoporattenuationband,thus,the networkiscalleda low‐ 
passfilter.WealsohavefromEq.9.7that 

 

FromEq.9.22 
 

TheplotsofαandβforpassandstopbandsareshowninFig.9.10 
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Thus,fromFig.9.10,α=0,β=2sinh‐1(f/fC)forf<fC 

α=2cosh‐1(f/fC);β=πforf>fC 

 

Fig.9.10 

Thecharacteristicsimpedancecanbecalculatedasfollows 
 

(9.23) 

From Eq.9.23, ZOTis rael when f<fC, i.e.in the pass band at f = fC, ZOT; and for f >fC, ZOTis 
imaginaryintheattenuationband,risingtoinfinitereactanceatinfinitefrequency.Thevariationof ZOTwith 
frequency is shown in Fig.9.11 
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Fig.9.11 

Similarly,thecharacteristicsimpedanceofaπ–networkisgivenby 
 

(9.24) 

The variation of ZOπwith frequency is shown in Fig.9.11 . For f <fC, ZOπis real ; at f = fC, ZOTis 
infinite,andforf>fC,ZOπisimaginary.Alowpassfiltercanbedesignedfromthespecificationsof cut‐off 
frequency and load resistance. 

Atcut‐offfrequency,Z1=‐ 4Z2 
 

 

Example9.1. 

Designalowpassfilter(bothπandT–sections)havingacut‐offfrequencyof2kHz 
to operate with a terminated load resistance of 500 Ω 

.solution.Itisgiventhatk=√(L/C)=500 Ω,andfC=2000Hz we 

know that L = k/πfC= 500/3.14 x 2000 = 79.6 mH 

C=1/πfCk=1/3.14.2000.500=0.318μF 
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TheTandπ–sectionsofthisfilterareshowninFig.9.12(a)and(b)respectively. 

Fig.9.12 

CONSTANTK–HIGHPASSFILTER 
 

Constant K – high pass filter can be obtained by changing the positions of series and shunt arms of 
thenetworksshowninFig.9.8.TheprototypehighpassfiltersareshowninFig.9.13,whereZ1=‐j/ωCandZ2= 
jωL . 

 

Fig.9.13 

Again,itcanbeobservedthattheproductofZ1andZ2isindependentoffrequency,andthe filter design 
obtained will be of the constantk type .Thus, Z1Z2are given by 

 

Thecut‐offfrequenciesaregivenbyZ1=0andZ2=‐4Z2. 

Z1=0indicatesj/ωC=0,orω→α 
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FromZ1=‐4Z2 

‐j/ωC=‐4jωL 

ω2LC = 1/4 

 
(9.25) 

 

 
ThereactancesofZ1andZ2aresketchedasfunctionsoffrequencyasshowninFig.9.14. 

 

Fig.9.14 

AsseenfromFig.9.14,thefiltertransmitsallfrequenciesbetweenf=fCandf=α.ThepointfC 

fromthegraphisapointatwhichZ1=‐4Z2.From 

Eq.9.7, 

 

FromEq.9.25, 
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Inthepassband, ‐1<Z1/4Z2<0,α=0ortheregioninwhichfC/f<1isapassbandβ=2sin‐1(fC/f 
) 

IntheattenuationbandZ1/4Z2<‐1,i.e.fC/f>1 

α=2cosh‐1[Z1/4Z2] 

=2cos‐1(fC/f);β=‐π 
 

Fig.9.15 

TheplotsofαandβforpassandstopbandsofahighpassfilternetworkareshowninFig.9.15. 

Ahighpassfiltermaybe designedsimilartothelowpassfilterbychoosingaresistiveload requalto 
the constant k , such that R = k = √L/C 
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Thecharacteristicimpedancecanbecalculatedusingtherelation 
 

 

 

 
Similarly,thecharacteristicimpedanceofaπ–networkisgivenby 

 

(9.26) 

Fig.9.16 

TheplotofcharacteristicimpedanceswithrespecttofrequencyisshowninFig.9.16. 

Example9.2. 
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Designahighpassfilterhavingacut‐offfrequencyof1kHzwithaloadresistance 
of600Ω. 

Solution. ItisgiventhatRL=K=600ΩandfC=1000Hz L = K 

/4πfc= 600 /4 x π x 1000 = 47.74 mH 

C=1/4πkfC=1/4πx600x1000=0.133μF 

TheTandπ–sectionsofthefilterareshowninFig.9.17. 
 

Fig.9.17 

m–DERIVEDT–SECTIONFILTER 
 

ItisclearfromFigs.9.10and9.15thattheattenuation isnotsharpinthe stop bandfor k‐typefilters. The 
characteristic impedance, Z0is a function of frequency and varies widely in the transmission band. 
Attenuation can be increased in the stop band by using ladder section, i.e.by connecting two or 
more identical sections. In order to join the filter sections, it would be necessary that their 
characteristic impedances be equal to each other at all frequencies. If their characteristic 
impedances match at all frequencies, they would also have the same pass band .However , 
cascading is not a proper solution from a practical point of view . 

This is because practical elements have a certain resistance, which gives rise to 
attenuation in the pass band also. Therefore, any attempt to increase attenuation in stop band by 
cascading also results in an increase of ‘α’ in the pass band .If the constant k section is regarded as 
the prototype, it is possible to design a filter to have rapid attenuation in the stop band , and the 
samecharacteristicimpedanceastheprototypeatallfrequencies.Suchafilteriscalledm–derived 
filter.SupposeaprototypeT –networkshown inFig.9.18(a)hastheseriesarmmodifiedasshownin Fig.9.18 
(b) , where m is a constant . Equating the characteristic impedance of the networks in Fig.9.18, we 
have 
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ZOT=ZOT 
,
 

Fig.9.18 

WhereZOT,isthecharacteristicimpedanceofthemodified(m–derived)T–network. 
 

 

(9.27) 

ItappearsthattheshuntarmZ‘
2consistsoftwoimpedancesinseriesasshowninFig.9.19. 

 

Fig.9.19 
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FromEq.9.27,1–m2/4mshouldbepositivetorealizetheimpedanceZ‘
2physically,i.e.0<m<1.Thusm 

–derivedsectioncanbeobtainedfromtheprototypebymodifyingitsseriesand shunt arms .The same 
technique can be applied to π section network. Suppose a prototype π – network shown in Fig. 9.20 
(a) has the shunt arm modified as shown in Fig. 9.20(b). 

 

 

 
Fig.9.20 

 

Z0π=Z‘ 

WhereZ‘
0πisthecharacteristicimpedanceofthemodified(m–derived)π–network. 

 

0π 
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Squaringandcrossmultiplyingtheaboveequationresultsasunder. 
 

(9.28) 

Itappearsthattheseriesarmofthem – derivedπsectionisaparallelcombinationof mZ1and 4mZ2 /1 
– m2 . The derived m section is shown in Fig.9.21. 

m–Derived LowPassFilter 

InFig.9.22,bothm–derivedlowpassTand πfiltersectionsareshown.For the T –section shownin 
Fig.9.22(a) , the shunt arm is to be chosen so that it is resonant at some frequency fαabove cut‐off 
frequency fC. 

If the shuntarm is series resonant ,its impedance willbe minimum or zero .Therefore , the 
outputiszeroandwillcorrespondtoinfiniteattenuationatthisparticularfrequency.Thus,atfα 

1/mωrC=1–m2/4mωrL,whereωristheresonantfrequency 



160 
 

Prepared By Er. Sushree Sangeeta Panda 

 

Fig.9.21 
 

Fig.9.22 
 

Sincethecut‐offfrequencyforthelowpassfilterisfc=1/π√LC 
 

(9.29) 
 

(9.30) 
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If a sharp cut‐off is desired,fαshould be near to fc. From Eq.9.29,it is clear that for the smaller 
the value of m,fαcomes close to fc.Equation 9.30 shows that if fcand fαare specified , the necessary 
value of m may then be calculated. Similarly, for m – derived π section, the inductance 
andcapacitance intheseriesarmconstitutearesonantcircuit.Thus,at fαa frequencycorresponds to 
infinite attenuation, i.e. at fα 

 

(9.31) 

Thusforboth m–derivedlowpassnetworksforapositivevalueofm(0<m<1),fα>fc. 
Equations 9.30 or 9.31 can beusedto choose thevalueof m,knowingfcandfr.After thevalue of m is 
evaluated, the elements of the T or π – networks can be found from Fig.9.22. The variation of 
attenuationfor alowpassm– derivedsectioncanbe verifiedfromα=2cosh‐1√Z1/4Z2forfc<f<fα. For Z1= 
jωL and Z2= ‐j/ωCfor the prototype. 

 

 

Figure9.23showsthevariationofα,βandZ0withrespectto frequencyfor anm –derived low pass 
filter. 
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Fig.9.23 

Example9.3 

Designam–derivedlowpassfilterhavingcut‐offfrequencyof1kHz, design 
impedanceof400Ω,andtheresonantfrequency1100Hz. 

Solution.k=400Ω,fC=1000Hz;fα=1100Hz From 

Eq.9.30 

 

LetusdesignthevaluesofL andCfora lowpass,K –typefilter(prototypefilter). Thus, 

 

Theelementsofm–derivedlowpasssectionscanbe obtainedwithreferencetoFig.9.22. 

ThustheT‐sectionelementsare 
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Them–derivedLPfiltersectionsareshowninFig.9.24. 
 

Fig.9.24 

m–Derived High Pass Filter 

InFig.9.25bothm–derivedhighpassTandπ–sectionare shown. 

If the shunt arm in T – section is series resonant, it offers minimum or zero 
impedance.Therefore,theoutputiszeroand,thus,atresonancefrequencyorthefrequency 
corresponds to infinite attenuation. 
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Fig.9.25 
 

FromEq.9.25,thecut–offfrequencyfCofahighpassprototypefilterisgivenby 
 

(9.32) 
 

(9.33) 

Similarly,forthem–derivedπ–section,theresonantcircuitisconstitutedbythe series arm 
inductance and capacitance . Thus , at fα 
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Fig.9.26 

Thusthefrequencycorrespondingtoinfiniteattenuationisthesameforbothsections. 
Equation 9.33may be used todetermine m fora given fαand fC. The elements of the m– 
derivedhighpassTor π–sectionscan befoundfrom Fig.9.25.Thevariationofα,βandZ0with frequency is 
shown in Fig. 9.26. 

 

Fig.9.26 
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Example 9.4. 

Designam‐derivedhighpassfilterwithacut‐offfrequencyof10kHz; design 
impedanceof5Ωandm= 0.4. 

Solution.Fortheprototypehighpassfilter, 
 

Theelementsofm‐derivedhighpasssectionscanbe obtainedwithreferencetoFig.9.25.Thus, 
theT‐sectionelementsare 

 

Tand πsectionsofthem–derivedhighpassfilterareshowninFig.9.27. 
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BANDPASSFILTER 

Fig.9.27 

 
 

 
AsalreadyexplainedinSection 9.1,abandpassfilterisonewhichattenuatesallfrequenciesbelow a lower 
cut‐off frequency f1and above an upper cut‐off frequencyf2.Frequencieslyingbetween f1and 
f2comprise the pass band ,and are transmitted with zero attenuation .A band pass filter may 
beobtainedbyusingalowpassfilterfollowedbyahighpassfilterinwhichthecut‐offfrequency of theLP 
filterisabovethecut‐offfrequency ofthe HP filter , theoverlapthusallowing onlyabandof frequencies 
to pass . This is not economical in practice; it is more economical to combine the low and high pass 
functions into a single filter section . 

Consider the circuit in Fig.9.28, each arm has a resonant circuit with same resonant 
frequency,i.e.theresonantfrequencyof theseriesarmandtheresonantfrequencyof theshunt arm are 
made equal to obtain the band pass characteristic. 

 

Fig.9.28 

Forthisconditionofequalresonantfrequencies. 
 

(9.34) 



168 
 

Prepared By Er. Sushree Sangeeta Panda 

 
(9.35) 

 

(9.36) 
 

FromEq.9.36 
 

Wherekisconstant.Thus, thefilterisaconstantk– type.Therefore,foraconstantk– typeinthe pass band. 
 



169 
 

Prepared By Er. Sushree Sangeeta Panda 

i.e.thevalueofZ1atlowercut‐offfrequencyisequaltothenegativeofthevalueofZ1attheupper 
cut‐offfrequency . 

 

(9.37) 

FromEq.9.34,L1C1=1/ω0
2

 

HenceEq.9.37maybewrittenas 
 

(9.38) 
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Fig.9.29 

Thus,theresonantfrequencyisthegeometricmeanofthecut‐offfrequencies.The 
variationofthereactanceswithrespecttofrequencyisshowninFig.9.29. 

IfthefilteristerminatedinaloadresistanceR=K,thenatthelowercut‐offfrequency. 
 

 

(9.39) 
 

(9.40) 
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(9.41) 

 

(9.42) 

Equations9.39through9.42arethedesignequations ofaprototypeband passfilter.The variation 
of α , β with respect to frequency is shown in Fig.9.30 . 

 

Fig.9.30 

Example9.5. 

Designk–typebandpassfilterhavingadesignimpedanceof500Ωandcut‐off 
frequencies1kHzand10kHz. 

Solution. 

k=500Ω;f1=1000Hz;f2=10000Hz 

FromEq.9.40, 
 

FromEq.9.39, 
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FromEq.9.41, 
 

FromEq.9.42, 
 

Eachofthetwoseriesarmsoftheconstantk,T–sectionfilterisgivenby 
 

BANDELIMINATIONFILTER 
 

Abandeliminationfilterisonewhichpasseswithoutattenuationallfrequencieslessthanthelower 
cut‐offfrequency f1, andgreater than the upper cut‐off frequency f2. Frequencies lying between 
f1and f2are attenuated. It is also known as band stop filter. Therefore, a band stop filter can be 
realized by connecting a low pass filter in parallel with a high pass section, in which the cut‐off 
frequencyoflowpassfilterisbelowthatofa highpassfilter.Theconfigurationsof Tand πconstant k band 
stop sections are shown in Fig.9.31. The band elimination filter is designed in the same manner as is 
the band pass filter. 
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Fig.9.31 

Asforthebandpass filter,theseriesandshuntarmsarechosento resonateatthesame 
frequencyω0.Therefore,fromFig.9.31(a),fortheconditionofequalresonantfrequencies 

 

(9.43) 
 

(9.44) 
 

(9.45) 
 

(9.46) 
 

(9.47) 

Atcut‐offfrequencies,Z1=‐ 4Z2 

MultiplyingbothsideswithZ2,weget 
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(9.48) 

Iftheloadisterminatedinaloadresistance,R=k,thenatlowercut‐offfrequency 
 

FromEq.9.44, 
 

 

(9.49) 

FromEq.9.44, 
 

(9.50) 
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AlsofromEq. 9.46, 
 

(9.51) 
 

(9.52) 
 

 

Fig.9.32 

The variation of reactances with respect to frequency is shown in Fig.9.32. Equation 9.49 
throughEq.9.52isthedesignequationsofaprototype bandeliminationfilter.Thevariationof α,β with 
respect to frequency is shown in Fig.9.33 . 
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Fig.9.33 

Example9.6. 

Designabandeliminationfilterhavingadesignimpedanceof600Ωand cut‐off 
frequenciesf1=2kHzandf2=6 kHz. 

Solution.(f2–f1)=4kHz 
 

 
MakinguseoftheEqs.9.49through9.52inSection9.10,wehave 
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